Sze, V., Chen, Y.-H., Emer, J., Suleiman, A. & Zhang, Z. {Hardware} for machine studying: challenges and alternatives. In 2017 IEEE Customized Built-in Circuits Convention (CICC) 179–186 (IEEE, 2017).
Zhou, F. C. & Chai, Y. Close to-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).
Gollisch, T. & Meister, M. Even smarter than scientists believed: neural computations in circuits of the retina. Neuron 65, 150–164 (2010).
Kyuma, Ok. et al. Synthetic retinas—quick, versatile picture processors. Nature 372, 197–198 (1994).
Kolb, H. How the retina works—a lot of the development of a picture takes place within the retina itself by means of using specialised neural circuits. Am. Scientist 91, 28–35 (2003).
Funatsu, E. et al. A synthetic retina chip with current-mode focal airplane picture processing capabilities. IEEE Trans. Electron Gadgets 44, 1777–1782 (1997).
Nitta, Y., Ohta, J., Tai, S. & Kyuma, Ok. Variable-sensitivity photodetector that makes use of a metal-semiconductor-metal construction for optical neural networks. Decide. Lett. 16, 611–613 (1991).
Jang, H. et al. In-sensor optoelectronic computing utilizing electrostatically doped silicon. Nat. Electron. 5, 519–525 (2022).
Mennel, L. et al. Ultrafast machine imaginative and prescient with 2D materials neural community picture sensors. Nature 579, 62–66 (2020).
Chen, S., Lou, Z., Chen, D. & Shen, G. Z. A synthetic versatile visible reminiscence system primarily based on an UV-motivated memristor. Adv. Mater. 30, 1705400 (2018).
Cui, B. Y. et al. Ferroelectric photosensor community: a complicated {hardware} answer to real-time machine imaginative and prescient. Nat. Commun. 13, 1707 (2022).
Solar, L. F. et al. In-sensor reservoir computing for language studying by way of two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).
Zhou, F. C. et al. Optoelectronic resistive random entry reminiscence for neuromorphic imaginative and prescient sensors. Nat. Nanotechnol. 14, 776–782 (2019).
Ahmed, T. et al. Optically stimulated synthetic synapse primarily based on layered black phosphorus. Small 15, 1900966 (2019).
Fu, X. et al. Graphene/MoS2−xOx/graphene photomemristor with tunable non-volatile responsivities for neuromorphic imaginative and prescient processing. Gentle.: Sci. Appl. 12, 39 (2023).
Lee, S. H., Peng, R. M., Wu, C. M. & Li, M. Programmable black phosphorus picture sensor for broadband optoelectronic edge computing. Nat. Commun. 13, 1485 (2022).
Liao, F. Y. et al. Bioinspired in-sensor visible adaptation for correct notion. Nat. Electron. 5, 84–91 (2022).
Liu, Ok. Q. et al. An optoelectronic synapse primarily based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022).
Pi, L. J. et al. Broadband convolutional processing utilizing band-alignment-tunable heterostructures. Nat. Electron. 5, 248–254 (2022).
Search engine optimization, S. H. et al. Synthetic optic-neural synapse for coloured and color-mixed sample recognition. Nat. Commun. 9, 5106 (2018).
Wang, C.-Y. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural community imaginative and prescient sensor. Sci. Adv. 6, eaba6173 (2020).
Yu, J. R. et al. Bioinspired mechano-photonic synthetic synapse primarily based on graphene/MoS2 heterostructure. Sci. Adv. 7, eabd9117 (2021).
Zhang, Z. H. et al. All-in-one two-dimensional retinomorphic {hardware} gadget for movement detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).
Lien, D.-H. et al. Engineering mild outcoupling in 2D supplies. Nano Lett. 15, 1356–1361 (2015).
Wang, Q. H., Kalantar-Zadeh, Ok., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition steel dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
Shim, J. et al. Managed crack propagation for atomic precision dealing with of wafer-scale two-dimensional supplies. Science 362, 665–670 (2018).
Khan, M. A. et al. The non-volatile electrostatic doping impact in MoTe2 field-effect transistors managed by hexagonal boron nitride and a steel gate. Sci. Rep. 12, 12085 (2022).
Wang, M. et al. Sturdy memristors primarily based on layered two-dimensional supplies. Nat. Electron. 1, 130–136 (2018).
Zhu, X. J., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling results in MoS2 gadgets for neuromorphic computing. Nat. Mater. 18, 141–148 (2019).
Lee, H. S. et al. MoS2 nanosheets for prime‐gate nonvolatile reminiscence transistor channel. Small 8, 3111–3115 (2012).
Chen, H. W. et al. Logic gates primarily based on neuristors comprised of two-dimensional supplies. Nat. Electron. 4, 399–404 (2021).
Liu, W. et al. Graphene charge-injection photodetectors. Nat. Electron. 5, 281–288 (2022).
Tong, L. et al. 2D materials-based homogeneous transistor-memory structure for neuromorphic {hardware}. Science 373, 1353–1358 (2021).
Wang, Y. et al. An in-memory computing structure primarily based on two-dimensional semiconductors for multiply-accumulate operations. Nat. Commun. 12, 3347 (2021).
Miao, J. S. et al. Heterojunction tunnel triodes primarily based on two-dimensional steel selenide and three-dimensional silicon. Nat. Electron. 5, 744–751 (2022).
Choi, C. S. et al. Human eye-inspired comfortable optoelectronic gadget utilizing high-density MoS2-graphene curved picture sensor array. Nat. Commun. 8, 1664 (2017).
Cao, R. R. et al. Compact synthetic neuron primarily based on anti-ferroelectric transistor. Nat. Commun. 13, 7018 (2022).
Kim, S. H. et al. Results of plasma therapy on floor properties of ultrathin layered MoS2. 2D Mater. 3, 035002 (2016).
Kang, N., Paudel, H. P., Leuenberger, M. N., Tetard, L. & Khondaker, S. I. Photoluminescence quenching in single-layer MoS2 by way of oxygen plasma therapy. J. Phys. Chem. C 118, 21258–21263 (2014).
Duy, L., Rawal, T. B. & Rahman, T. S. Single-layer MoS2 with sulfur vacancies: construction and catalytic utility. J. Phys. Chem. C 118, 5346–5351 (2014).
Komsa, H.-P., Kurasch, S., Lehtinen, O., Kaiser, U. & Krasheninnikov, A. V. From level to prolonged defects in two-dimensional MoS2: evolution of atomic construction below electron irradiation. Phys. Rev. B 88, 035301 (2013).
Li, D. et al. MoS2 memristors exhibiting variable switching traits towards biorealistic synaptic emulation. ACS Nano 12, 9240–9252 (2018).
Sangwan, V. Ok. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).
Chen, Q. et al. Ultralong 1D emptiness channels for fast atomic migration throughout 2D void formation in monolayer MoS2. ACS Nano 12, 7721–7730 (2018).
Zhou, X. Y., Koltun, V. & Krähenbühl, P. Monitoring objects as factors. In sixteenth European Convention on Pc Imaginative and prescient (ECCV) 474–490 (Springer, 2020).
Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You solely look as soon as: unified, real-time object detection. In 2016 IEEE Convention on Pc Imaginative and prescient and Sample Recognition (CVPR) 779–788 (IEEE, 2016).
Ren, S., He, Ok., Girshick, R. & Solar, J. Quicker R-CNN: in direction of real-time object detection with area proposal networks. IEEE Trans. Sample Anal. Mach. Intell. 39, 1137–1149 (2017).
Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching gadgets. Nat. Electron. 1, 333–343 (2018).