Liu, C. et al. 2D materials-based static random-access reminiscence. Adv. Mater. 34, 2107894 (2022).
Wan, Y. et al. Wafer-scale single-orientation 2D layers by atomic edge-guided epitaxial progress. Chem. Soc. Rev. 51, 803–811 (2022).
Chubarov, M. et al. Wafer-scale epitaxial progress of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).
Li, T. et al. Epitaxial progress of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).
Vlassiouk, I. V. et al. Evolutionary choice progress of two-dimensional supplies on polycrystalline substrates. Nat. Mater. 17, 318–322 (2018).
Zhang, B. Y. et al. Hexagonal metallic oxide monolayers derived from the metallic–fuel interface. Nat. Mater. 20, 1073–1078 (2021).
Tusche, C., Meyerheim, H. L. & Kirschner, J. Commentary of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99, 026102 (2007).
Dong, J., Zhang, L., Dai, X. & Ding, F. The epitaxy of 2D supplies progress. Nat. Commun. 11, 5862 (2020).
Devulapalli, V., Bishara, H., Ghidelli, M., Dehm, G. & Liebscher, C. H. Affect of substrates and e-beam evaporation parameters on the microstructure of nanocrystalline and epitaxially grown Ti skinny movies. Appl. Surf. Sci. 562, 150194 (2021).
Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).
Wang, L. et al. Epitaxial progress of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).
Yang, P. et al. Epitaxial progress of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14, 5036–5045 (2020).
Dumcenco, D. et al. Massive-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015).
Yu, H. et al. Wafer-scale progress and switch of highly-oriented monolayer MoS2 steady movies. ACS Nano 11, 12001–12007 (2017).
Aljarb, A. et al. Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano 11, 9215–9222 (2017).
Suenaga, Okay. et al. Floor-mediated aligned progress of monolayer MoS2 and in-plane heterostructures with graphene on sapphire. ACS Nano 12, 10032–10044 (2018).
Zhang, X. et al. Diffusion-controlled epitaxy of huge space coalesced WSe2 monolayers on sapphire. Nano Lett. 18, 1049–1056 (2018).
Wang, Q. et al. Wafer-scale extremely oriented monolayer MoS2 with massive area sizes. Nano Lett. 20, 7193–7199 (2020).
Toofan, J. & Watson, P. R. The termination of the α-Al2O3 (0001) floor: a LEED crystallography willpower. Surf. Sci. 401, 162–172 (1998).
Chiang, Y.-M., Birnie, D. P. & Kingery, W. D. Bodily Ceramics: Ideas for Ceramic Science and Engineering (John Wiley & Sons, 1997).
Ji, Q. et al. Unravelling orientation distribution and merging conduct of monolayer MoS2 domains on sapphire. Nano Lett. 15, 198–205 (2015).
Yoshimoto, M. et al. Atomic‐scale formation of ultrasmooth surfaces on sapphire substrates for top‐high quality skinny‐movie fabrication. Appl. Phys. Lett. 67, 2615–2617 (1995).
Pham Van, L., Kurnosikov, O. & Cousty, J. Evolution of steps on vicinal (0001) surfaces of α-alumina. Surf. Sci. 411, 263–271 (1998).
Thune, E., Fakih, A., Matringe, C., Babonneau, D. & Guinebretière, R. Understanding of 1 dimensional ordering mechanisms on the (001) sapphire vicinal floor. J. Appl. Phys. 121, 015301 (2017).
Koma, A. Van der Waals epitaxy for extremely lattice-mismatched programs. J. Cryst. Progress 201–202, 236–241 (1999).
Lin, Y.-C. et al. Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 12, 965–975 (2018).
Shi, Y. et al. Engineering wafer-scale epitaxial two-dimensional supplies via sapphire template screening for superior high-performance nanoelectronics. ACS Nano 15, 9482–9494 (2021).
Chen, L. et al. Step-edge-guided nucleation and progress of aligned WSe2 on sapphire by way of a layer-over-layer progress mode. ACS Nano 9, 8368–8375 (2015).
Fang, F. et al. Two-dimensional Cs2AgBiBr6/WS2 heterostructure-based photodetector with boosted detectivity by way of interfacial engineering. ACS Nano 16, 3985–3993 (2022).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density purposeful dispersion correction (DFT-D) for the 94 parts H-Pu. J. Chem. Phys. 132, 154104 (2010).