You are currently viewing Oriented lateral progress of two-dimensional supplies on c-plane sapphire

Oriented lateral progress of two-dimensional supplies on c-plane sapphire


  • Liu, C. et al. 2D materials-based static random-access reminiscence. Adv. Mater. 34, 2107894 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wan, Y. et al. Wafer-scale single-orientation 2D layers by atomic edge-guided epitaxial progress. Chem. Soc. Rev. 51, 803–811 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chubarov, M. et al. Wafer-scale epitaxial progress of unidirectional WS2 monolayers on sapphire. ACS Nano 15, 2532–2541 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, T. et al. Epitaxial progress of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vlassiouk, I. V. et al. Evolutionary choice progress of two-dimensional supplies on polycrystalline substrates. Nat. Mater. 17, 318–322 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, B. Y. et al. Hexagonal metallic oxide monolayers derived from the metallic–fuel interface. Nat. Mater. 20, 1073–1078 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tusche, C., Meyerheim, H. L. & Kirschner, J. Commentary of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99, 026102 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Dong, J., Zhang, L., Dai, X. & Ding, F. The epitaxy of 2D supplies progress. Nat. Commun. 11, 5862 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Devulapalli, V., Bishara, H., Ghidelli, M., Dehm, G. & Liebscher, C. H. Affect of substrates and e-beam evaporation parameters on the microstructure of nanocrystalline and epitaxially grown Ti skinny movies. Appl. Surf. Sci. 562, 150194 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Epitaxial progress of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, P. et al. Epitaxial progress of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14, 5036–5045 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dumcenco, D. et al. Massive-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yu, H. et al. Wafer-scale progress and switch of highly-oriented monolayer MoS2 steady movies. ACS Nano 11, 12001–12007 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Aljarb, A. et al. Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano 11, 9215–9222 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Suenaga, Okay. et al. Floor-mediated aligned progress of monolayer MoS2 and in-plane heterostructures with graphene on sapphire. ACS Nano 12, 10032–10044 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Diffusion-controlled epitaxy of huge space coalesced WSe2 monolayers on sapphire. Nano Lett. 18, 1049–1056 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. Wafer-scale extremely oriented monolayer MoS2 with massive area sizes. Nano Lett. 20, 7193–7199 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Toofan, J. & Watson, P. R. The termination of the α-Al2O3 (0001) floor: a LEED crystallography willpower. Surf. Sci. 401, 162–172 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Chiang, Y.-M., Birnie, D. P. & Kingery, W. D. Bodily Ceramics: Ideas for Ceramic Science and Engineering (John Wiley & Sons, 1997).

  • Ji, Q. et al. Unravelling orientation distribution and merging conduct of monolayer MoS2 domains on sapphire. Nano Lett. 15, 198–205 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yoshimoto, M. et al. Atomic‐scale formation of ultrasmooth surfaces on sapphire substrates for top‐high quality skinny‐movie fabrication. Appl. Phys. Lett. 67, 2615–2617 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Pham Van, L., Kurnosikov, O. & Cousty, J. Evolution of steps on vicinal (0001) surfaces of α-alumina. Surf. Sci. 411, 263–271 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Thune, E., Fakih, A., Matringe, C., Babonneau, D. & Guinebretière, R. Understanding of 1 dimensional ordering mechanisms on the (001) sapphire vicinal floor. J. Appl. Phys. 121, 015301 (2017).

    Article 

    Google Scholar
     

  • Koma, A. Van der Waals epitaxy for extremely lattice-mismatched programs. J. Cryst. Progress 201–202, 236–241 (1999).

    Article 

    Google Scholar
     

  • Lin, Y.-C. et al. Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 12, 965–975 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Y. et al. Engineering wafer-scale epitaxial two-dimensional supplies via sapphire template screening for superior high-performance nanoelectronics. ACS Nano 15, 9482–9494 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. et al. Step-edge-guided nucleation and progress of aligned WSe2 on sapphire by way of a layer-over-layer progress mode. ACS Nano 9, 8368–8375 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Fang, F. et al. Two-dimensional Cs2AgBiBr6/WS2 heterostructure-based photodetector with boosted detectivity by way of interfacial engineering. ACS Nano 16, 3985–3993 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density purposeful dispersion correction (DFT-D) for the 94 parts H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 

    Google Scholar
     

  • Leave a Reply