You are currently viewing Nanovaccine-based methods for lymph node focused supply and imaging in tumor immunotherapy | Journal of Nanobiotechnology

Nanovaccine-based methods for lymph node focused supply and imaging in tumor immunotherapy | Journal of Nanobiotechnology


  • Pardoll DM. The blockade of immune checkpoints in most cancers immunotherapy. Nat Rev Most cancers. 2012;12(4):252–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell remedy. Nat Rev Clin Oncol. 2019;16(6):372–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saxena M, et al. Therapeutic most cancers vaccines. Nat Rev Most cancers. 2021;21(6):360–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, et al. Nanotechnology-based immunotherapies to fight most cancers metastasis. Mol Biol Rep. 2021;48(9):6563–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen F, et al. Nanobiomaterial-based vaccination immunotherapy of most cancers. Biomaterials. 2021;270: 120709.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, et al. Lymph node-targeting nanovaccines for most cancers immunotherapy. J Management Launch. 2022;351:102–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hollingsworth RE, Jansen Ok. Turning the nook on therapeutic most cancers vaccines. NPJ Vaccines. 2019;4:7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai T, et al. Supply of nanovaccine in the direction of lymphoid organs: latest methods in enhancing most cancers immunotherapy. J Nanobiotechnol. 2021;19(1):389.

    Article 
    CAS 

    Google Scholar
     

  • Najibi AJ, Mooney DJ. Cell and tissue engineering in lymph nodes for most cancers immunotherapy. Adv Drug Deliv Rev. 2020;161–162:42–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldberg MS. Enhancing most cancers immunotherapy by nanotechnology. Nat Rev Most cancers. 2019;19(10):587–602.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, et al. Nanovaccines for most cancers immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(5): e1559.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li SR, et al. Current advances in porous nanomaterials-based drug supply programs for most cancers immunotherapy. J Nanobiotechnol. 2022;20(1):277.

    Article 

    Google Scholar
     

  • Sharma R, et al. Growth, characterization and ex vivo evaluation of lipid-polymer primarily based nanocomposite(s) as a possible service for site-specific supply of immunogenic molecules. J Drug Deliv Sci Technol. 2019;51:310–9.

    Article 
    CAS 

    Google Scholar
     

  • Dong H, et al. Biomaterials facilitating dendritic cell-mediated most cancers immunotherapy. Adv Sci (Weinh). 2023;10(18): e2301339.

    Article 
    PubMed 

    Google Scholar
     

  • Tian R, et al. Multimodal stratified imaging of nanovaccines in lymph nodes for enhancing most cancers immunotherapy. Adv Drug Deliv Rev. 2020;161–162:145–60.

    Article 
    PubMed 

    Google Scholar
     

  • Sestito LF, et al. Lymphatic-draining nanoparticles ship Bay K8644 payload to lymphatic vessels and improve their pumping operate. Sci Adv. 2023;9(8): eabq0435.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zahin N, et al. Nanoparticles and its biomedical purposes in well being and ailments: particular concentrate on drug supply. Environ Sci Pollut Res Int. 2020;27(16):19151–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Girard JP, Moussion C, Förster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol. 2012;12(11):762–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sainte-Marie G. The lymph node revisited: improvement, morphology, functioning, and function in triggering major immune responses. Anat Rec (Hoboken). 2010;293(2):320–37.

    Article 
    PubMed 

    Google Scholar
     

  • Jalkanen S, Salmi M. Lymphatic endothelial cells of the lymph node. Nat Rev Immunol. 2020;20(9):566–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis MJ, et al. Determinants of valve gating in accumulating lymphatic vessels from rat mesentery. Am J Physiol Coronary heart Circ Physiol. 2011;301(1):H48-60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scallan JP, et al. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol. 2016;594(20):5749–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Archer PA, Thomas SN. Improvements in lymph node concentrating on nanocarriers. Semin Immunol. 2021;56: 101534.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roozendaal R, Mebius RE, Kraal G. The conduit system of the lymph node. Int Immunol. 2008;20(12):1483–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ager A. Excessive endothelial venules and different blood vessels: important regulators of lymphoid organ improvement and performance. Entrance Immunol. 2017;8:45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baekkevold ES, et al. The CCR7 ligand elc (CCL19) is transcytosed in excessive endothelial venules and mediates T cell recruitment. J Exp Med. 2001;193(9):1105–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drayton DL, et al. Lymphoid organ improvement: from ontogeny to neogenesis. Nat Immunol. 2006;7(4):344–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gretz JE, et al. Lymph-borne chemokines and different low molecular weight molecules attain excessive endothelial venules by way of specialised conduits whereas a useful barrier limits entry to the lymphocyte microenvironments in lymph node cortex. J Exp Med. 2000;192(10):1425–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • du Bois H, Heim TA, Lund AW. Tumor-draining lymph nodes: On the crossroads of metastasis and immunity. Sci Immunol. 2021;6(63): eabg3551.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koukourakis MI, Giatromanolaki A. Tumor draining lymph nodes, immune response, and radiotherapy: in the direction of a revisal of therapeutic ideas. Biochim Biophys Acta Rev Most cancers. 2022;1877(3): 188704.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sautes-Fridman C, et al. Tertiary lymphoid buildings within the period of most cancers immunotherapy. Nat Rev Most cancers. 2019;19(6):307–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin L, et al. Tertiary lymphoid organs in most cancers immunology: mechanisms and the brand new technique for immunotherapy. Entrance Immunol. 2019;10:1398.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picker LJ, Butcher EC. Physiological and molecular mechanisms of lymphocyte homing. Annu Rev Immunol. 1992;10:561–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngo VN, et al. Lymphotoxin alpha/beta and tumor necrosis issue are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med. 1999;189(2):403–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi NS, et al. Regulatory T cells in tumor-associated tertiary lymphoid buildings suppress anti-tumor T cell responses. Immunity. 2015;43(3):579–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article 
    PubMed 

    Google Scholar
     

  • Johanns TM, et al. Endogenous neoantigen-specific CD8 T cells recognized in two glioblastoma fashions utilizing a most cancers immunogenomics strategy. Most cancers Immunol Res. 2016;4(12):1007–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts EW, et al. Essential function for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Most cancers Cell. 2016;30(2):324–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salmon H, et al. Growth and activation of CD103(+) dendritic cell progenitors on the tumor website enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 2016;44(4):924–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motz GT, Coukos G. Deciphering and reversing tumor immune suppression. Immunity. 2013;39(1):61–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen DS, Mellman I. Components of most cancers immunity and the cancer-immune set level. Nature. 2017;541(7637):321–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Workel HH, et al. A transcriptionally distinct CXCL13(+)CD103(+)CD8(+) T-cell inhabitants is related to B-cell recruitment and neoantigen load in human most cancers. Most cancers Immunol Res. 2019;7(5):784–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabrita R, et al. Tertiary lymphoid buildings enhance immunotherapy and survival in melanoma. Nature. 2020;577(7791):561–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maldonado L, et al. Intramuscular therapeutic vaccination concentrating on HPV16 induces T cell responses that localize in mucosal lesions. Sci Transl Med. 2014;6(221):221ra13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rafiq S, Hackett CS, Brentjens RJ. Engineering methods to beat the present roadblocks in CAR T cell remedy. Nat Rev Clin Oncol. 2020;17(3):147–67.

    Article 
    PubMed 

    Google Scholar
     

  • Liu H, et al. Therapeutic nanovaccines sensitize EBV-associated tumors to checkpoint blockade remedy. Biomaterials. 2020;255: 120158.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palucka Ok, Banchereau J. Dendritic-cell-based therapeutic most cancers vaccines. Immunity. 2013;39(1):38–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, et al. Alternative of nanovaccine supply mode has profound impacts on the intralymph node spatiotemporal distribution and immunotherapy efficacy. Adv Sci (Weinh). 2020;7(19):2001108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tumeh PC, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddiqui I, et al. Intratumoral Tcf1(+)PD-1(+)CD8(+) T cells with stem-like properties promote tumor management in response to vaccination and checkpoint blockade immunotherapy. Immunity. 2019;50(1):195–211.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jewell CM, Lopez SC, Irvine DJ. In situ engineering of the lymph node microenvironment by way of intranodal injection of adjuvant-releasing polymer particles. Proc Natl Acad Sci U S A. 2011;108(38):15745–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tagawa ST, et al. Section I research of intranodal supply of a plasmid DNA vaccine for sufferers with Stage IV melanoma. Most cancers. 2003;98(1):144–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spaner DE, et al. Enhanced viral and tumor immunity with intranodal injection of canary pox viruses expressing the melanoma antigen, gp100. Most cancers. 2006;106(4):890–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohanan D, et al. Administration routes have an effect on the standard of immune responses: a cross-sectional analysis of particulate antigen-delivery programs. J Management Launch. 2010;147(3):342–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang H, Wang Q, Solar X. Lymph node concentrating on methods to enhance vaccination efficacy. J Management Launch. 2017;267:47–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, De Koker S, De Geest BG. Engineering methods for lymph node focused immune activation. Acc Chem Res. 2020;53(10):2055–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schudel A, Francis DM, Thomas SN. Materials design for lymph node drug supply. Nat Rev Mater. 2019;4(6):415–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, et al. Focused codelivery of an antigen and twin agonists by hybrid nanoparticles for enhanced most cancers immunotherapy. Nano Lett. 2019;19(7):4237–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kramer S, et al. HPMA-based nanocarriers for efficient immune system stimulation. Macromol Biosci. 2019;19(6): e1800481.

    Article 
    PubMed 

    Google Scholar
     

  • Irvine DJ, et al. Artificial nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115(19):11109–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura T, et al. The impact of measurement and cost of lipid nanoparticles ready by microfluidic mixing on their lymph node transitivity and distribution. Mol Pharm. 2020;17(3):944–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng Q, et al. Cationic micelle supply of Trp2 peptide for environment friendly lymphatic draining and enhanced cytotoxic T-lymphocyte responses. J Management Launch. 2015;200:1–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiss E, Bertoti I, Vargha-Butler EI. XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) movies. J Colloid Interface Sci. 2002;245(1):91–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo M, et al. Artificial nanovaccines for immunotherapy. J Management Launch. 2017;263:200–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes by lymphatic vessels. Nat Rev Immunol. 2005;5(8):617–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niikura Ok, et al. Gold nanoparticles as a vaccine platform: affect of measurement and form on immunological responses in vitro and in vivo. ACS Nano. 2013;7(5):3926–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Q, et al. Elastic nanovaccine enhances dendritic cell-mediated tumor immunotherapy. Small. 2022;18(32): e2201108.

    Article 
    PubMed 

    Google Scholar
     

  • Wculek SK, et al. Dendritic cells in most cancers immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma R, Vyas SP. Mannose functionalized plain and endosomolytic nanocomposite(s)-based strategy for the induction of efficient antitumor immune response in C57BL/6 mice melanoma mannequin. Drug Dev Ind Pharm. 2019;45(7):1089–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma R, et al. Launch promoter-based systematically designed nanocomposite(s): a novel strategy for site-specific supply of tumor-associated antigen(s) (TAAs). Artif Cells Nanomed Biotechnol. 2018;46(sup2):776–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ke X, et al. Bodily and chemical profiles of nanoparticles for lymphatic concentrating on. Adv Drug Deliv Rev. 2019;151–152:72–93.

    Article 
    PubMed 

    Google Scholar
     

  • Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in irritation and most cancers. Physiol Rev. 2012;92(3):1005–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stylianopoulos T, et al. Diffusion of particles within the extracellular matrix: the impact of repulsive electrostatic interactions. Biophys J. 2010;99(5):1342–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong H, et al. Polyethyleneimine modification of aluminum hydroxide nanoparticle enhances antigen transportation and cross-presentation of dendritic cells. Int J Nanomed. 2018;13:3353–65.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, et al. Endogenous/exogenous nanovaccines synergistically improve dendritic cell-mediated tumor immunotherapy. Adv Healthc Mater. 2023;584: e2203028.

    Article 

    Google Scholar
     

  • Nishimoto Y, et al. Carboxyl-, sulfonyl-, and phosphate-terminal dendrimers as a nanoplatform with lymph node concentrating on. Int J Pharm. 2020;576: 119021.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasut G, Veronese FM. Polymer–drug conjugation, latest achievements and common methods. Prog Polym Sci. 2007;32(8–9):933–61.

    Article 
    CAS 

    Google Scholar
     

  • Knop Ok, et al. Poly(ethylene glycol) in drug supply: execs and cons in addition to potential options. Angew Chem Int Ed Engl. 2010;49(36):6288–308.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stroh M, et al. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to reinforce interstitial diffusion. Nat Mater. 2004;3(7):489–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nance EA, et al. A dense poly(ethylene glycol) coating improves penetration of huge polymeric nanoparticles inside mind tissue. Sci Transl Med. 2012;4(149): 149ra119.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam J, et al. Modularly programmable nanoparticle vaccine primarily based on polyethyleneimine for customized most cancers immunotherapy. Adv Sci (Weinh). 2021;8(5):2002577.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moghimi SM. The impact of methoxy-PEG chain size and molecular structure on lymph node concentrating on of immuno-PEG liposomes. Biomaterials. 2006;27(1):136–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao DA, et al. Biodegradable PLGA primarily based nanoparticles for sustained regional lymphatic drug supply. J Pharm Sci. 2010;99(4):2018–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kourtis IC, et al. Peripherally administered nanoparticles goal monocytic myeloid cells, secondary lymphoid organs and tumors in mice. PLoS ONE. 2013;8(4): e61646.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy ST, et al. In vivo concentrating on of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Management Launch. 2006;112(1):26–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reddy ST, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol. 2007;25(10):1159–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: maximising lymphatic drug publicity to enhance the remedy of lymph-metastatic cancers. J Management Launch. 2014;193:241–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Melia MJ, et al. High quality of CD8(+) T cell immunity evoked in lymph nodes is compartmentalized by route of antigen transport and useful in tumor context. Sci Adv. 2020;6(50): eabd7134.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and improve vaccine efficacy. Nat Biotechnol. 2015;33(1):64–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, et al. The impact of the form of mesoporous silica nanoparticles on mobile uptake and cell operate. Biomaterials. 2010;31(3):438–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinde E, et al. Pair correlation microscopy reveals the function of nanoparticle form in intracellular transport and website of drug launch. Nat Nanotechnol. 2017;12(1):81–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cha BG, Jeong JH, Kim J. Further-large pore mesoporous silica nanoparticles enabling co-delivery of excessive quantities of protein antigen and toll-like receptor 9 agonist for enhanced most cancers vaccine efficacy. ACS Cent Sci. 2018;4(4):484–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia Y, et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat Mater. 2018;17(2):187–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune T, et al. Engineering the deformability of albumin-stabilized emulsions for lymph-node vaccine supply. Adv Mater. 2021;33(26): e2100106.

    Article 
    PubMed 

    Google Scholar
     

  • Torchilin VP. Current advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaur R, et al. Manipulation of the floor pegylation together with decreased vesicle measurement of cationic liposomal adjuvants modifies their clearance kinetics from the injection website, and the speed and kind of T cell response. J Management Launch. 2012;164(3):331–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang Y, et al. PEGylated cationic liposomes robustly increase vaccine-induced immune responses: function of lymphatic trafficking and biodistribution. J Management Launch. 2012;159(1):135–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu X, et al. Melittin-lipid nanoparticles goal to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun. 2020;11(1):1110.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuai R, et al. Designer vaccine nanodiscs for customized most cancers immunotherapy. Nat Mater. 2017;16(4):489–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oberli MA, et al. Lipid nanoparticle assisted mRNA supply for potent most cancers immunotherapy. Nano Lett. 2017;17(3):1326–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim M, et al. Engineered ionizable lipid nanoparticles for focused supply of RNA therapeutics into several types of cells within the liver. Sci Adv. 2021;7(9): eabf4398.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeta M, et al. Vitamin E scaffolds of pH-responsive lipid nanoparticles as DNA vaccines in most cancers and protozoan an infection. Mol Pharm. 2020;17(4):1237–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miao L, Zhang Y, Huang L. mRNA vaccine for most cancers immunotherapy. Mol Most cancers. 2021;20(1):41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhardwaj P, et al. Developments in prophylactic and therapeutic nanovaccines. Acta Biomater. 2020;108:1–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahdev P, Ochyl LJ, Moon JJ. Biomaterials for nanoparticle vaccine supply programs. Pharm Res. 2014;31(10):2563–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu XY, et al. The traits and transfection effectivity of cationic poly (ester-co-urethane) – brief chain PEI conjugates self-assembled with DNA. Biomaterials. 2009;30(34):6665–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, et al. A common technique in the direction of customized nanovaccines primarily based on fluoropolymers for post-surgical most cancers immunotherapy. Nat Nanotechnol. 2020;15(12):1043–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng Q, et al. Tailoring polymeric hybrid micelles with lymph node concentrating on capacity to enhance the efficiency of most cancers vaccines. Biomaterials. 2017;122:105–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shae D, et al. Co-delivery of peptide neoantigens and stimulator of interferon genes agonists enhances response to most cancers vaccines. ACS Nano. 2020;14(8):9904–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv M, et al. Redox-responsive hyperbranched poly(amido amine) and polymer dots as a vaccine supply system for most cancers immunotherapy. J Mater Chem B. 2017;5(48):9532–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi GN, et al. Enhanced antitumor immunity by concentrating on dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials. 2017;113:191–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A. Useful characterization of chitin and chitosan. Curr Chem Biol. 2009;3(2):203.

    CAS 

    Google Scholar
     

  • Wang X, et al. Inorganic nanomaterials with fast clearance for biomedical purposes. Chem Soc Rev. 2021;50(15):8669–742.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hess KL, Medintz IL, Jewell CM. Designing inorganic nanomaterials for vaccines and immunotherapies. Nano At present. 2019;27:73–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida JPM, et al. In vivo gold nanoparticle supply of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor fashions. Small. 2015;11(12):1453–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao F, et al. Photothermally managed MHC Class I Restricted CD8(+) T-cell responses elicited by hyaluronic acid embellished gold nanoparticles as a vaccine for most cancers immunotherapy. Adv Healthc Mater. 2018;7(10): e1701439.

    Article 
    PubMed 

    Google Scholar
     

  • Guo Y, et al. Magnetic-responsive and focused most cancers nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy. Biomaterials. 2019;219: 119370.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassan HA, et al. Twin stimulation of antigen presenting cells utilizing carbon nanotube-based vaccine supply system for most cancers immunotherapy. Biomaterials. 2016;104:310–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner J, et al. mesoporous silica nanoparticles as pH-responsive service for the immune-activating drug resiquimod improve the native immune response in mice. ACS Nano. 2021;15(3):4450–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, et al. Designing and engineering of nanocarriers for bioapplication in most cancers immunotherapy. ACS Appl Bio Mater. 2020;3(12):8321–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li F, et al. Engineering magnetosomes for high-performance most cancers vaccination. ACS Cent Sci. 2019;5(5):796–807.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, et al. SPIO improve the cross-presentation and migration of DCs and anionic SPIO affect the nanoadjuvant results associated to interleukin-1beta. Nanoscale Res Lett. 2018;13(1):409.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, et al. Silica-based nanoparticles for biomedical purposes: from nanocarriers to biomodulators. Acc Chem Res. 2020;53(8):1545–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, et al. Preparation and software of mesoporous core-shell nanosilica utilizing leucine by-product as template in efficient drug supply. Chin Chem Lett. 2020;31(5):1165–7.

    Article 
    CAS 

    Google Scholar
     

  • Chen L, et al. Simultaneous T cell activation and macrophage polarization to advertise potent tumor suppression by iron oxide-embedded large-pore mesoporous organosilica core-shell nanospheres. Adv Healthc Mater. 2019;8(9): e1900039.

    Article 
    PubMed 

    Google Scholar
     

  • Hong X, et al. The pore measurement of mesoporous silica nanoparticles regulates their antigen supply effectivity. Sci Adv. 2020;6(25): eaaz4462.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassan H, et al. Software of carbon nanotubes in most cancers vaccines: achievements, challenges and probabilities. J Management Launch. 2019;297:79–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu C, et al. Environment friendly lymph node-targeted supply of customized most cancers vaccines with reactive oxygen species-inducing decreased graphene oxide nanosheets. ACS Nano. 2020;14(10):13268–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng Z, Pu Ok. Enhancing most cancers immunotherapy by cell membrane-camouflaged nanoparticles. Adv Funct Mater. 2020;30(43):2004397.

    Article 
    CAS 

    Google Scholar
     

  • Yang X, et al. pH-responsive biomimetic polymeric micelles as lymph node-targeting vaccines for enhanced antitumor immune responses. Biomacromol. 2020;21(7):2818–28.

    Article 
    CAS 

    Google Scholar
     

  • Liu WL, et al. Cytomembrane nanovaccines present therapeutic results by mimicking tumor cells and antigen presenting cells. Nat Commun. 2019;10(1):3199.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morishita M, et al. Exosome-based tumor antigens-adjuvant co-delivery using genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials. 2016;111:55–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phung CD, et al. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes concentrating on tumor-draining lymph nodes for efficient induction of antitumor T-cell responses. Acta Biomater. 2020;115:371–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, et al. Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials. 2020;255: 120208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo Y, et al. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity in opposition to melanoma. ACS Nano. 2015;9(7):6918–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forster R, Braun A, Worbs T. Lymph node homing of T cells and dendritic cells by way of afferent lymphatics. Traits Immunol. 2012;33(6):271–80.

    Article 
    PubMed 

    Google Scholar
     

  • Santos P, Almeida F. Exosome-based vaccines: historical past, present state, and scientific trials. Entrance Immunol. 2021;12: 711565.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harari A, et al. Antitumour dendritic cell vaccination in a priming and boosting strategy. Nat Rev Drug Discov. 2020;19(9):635–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaput N, et al. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants effectively prime naive Tc1 lymphocytes resulting in tumor rejection. J Immunol. 2004;172(4):2137–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andre F, et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes switch useful MHC class I/peptide complexes to dendritic cells. J Immunol. 2004;172(4):2126–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • d’Ischia M, et al. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring technique. Acc Chem Res. 2014;47(12):3541–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Ai Ok, Lu L. Polydopamine and its by-product supplies: synthesis and promising purposes in vitality, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057–115.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu G, et al. Albumin/vaccine nanocomplexes that assemble in vivo for mixture most cancers immunotherapy. Nat Commun. 2017;8(1):1954.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee BR, et al. Engineered human ferritin nanoparticles for direct supply of tumor antigens to lymph node and most cancers immunotherapy. Sci Rep. 2016;6:35182.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang T, et al. A most cancers vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat Commun. 2018;9(1):1532.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian Y, et al. Concentrating on dendritic cells in lymph node with an antigen peptide-based nanovaccine for most cancers immunotherapy. Biomaterials. 2016;98:171–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, et al. A DNA nanodevice-based vaccine for most cancers immunotherapy. Nat Mater. 2021;20(3):421–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei C, et al. Hyaluronic acid and albumin primarily based nanoparticles for drug supply. J Management Launch. 2021;331:416–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, et al. In vivo irreversible albumin-binding near-infrared dye conjugate as a naked-eye and fluorescence dual-mode imaging agent for lymph node tumor metastasis prognosis. Biomaterials. 2019;217: 119279.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdallah M, et al. Lymphatic concentrating on by albumin-hitchhiking: purposes and optimisation. J Management Launch. 2020;327:117–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, et al. Construction-based programming of lymph-node concentrating on in molecular vaccines. Nature. 2014;507(7493):519–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudra JS, et al. A self-assembling peptide performing as an immune adjuvant. Proc Natl Acad Sci U S A. 2010;107(2):622–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdullah T, et al. Supramolecular self-assembled peptide-based vaccines: present state and future views. Entrance Chem. 2020;8: 598160.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veneziano R, et al. Function of nanoscale antigen group on B-cell activation probed utilizing DNA origami. Nat Nanotechnol. 2020;15(8):716–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu G, et al. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for most cancers immunotherapy. Nat Commun. 2017;8(1):1482.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi S, et al. The brilliant way forward for nanotechnology in lymphatic system imaging and imaging-guided surgical procedure. J Nanobiotechnol. 2022;20(1):24.

    Article 

    Google Scholar
     

  • Steeg PS. Tumor metastasis: mechanistic insights and scientific challenges. Nat Med. 2006;12(8):895–904.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suhail Y, et al. Programs biology of most cancers metastasis. Cell Syst. 2019;9(2):109–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moncayo VM, et al. Sentinel lymph node biopsy procedures. Semin Nucl Med. 2017;47(6):595–617.

    Article 
    PubMed 

    Google Scholar
     

  • Bieniasz-Krzywiec P, et al. Podoplanin-expressing macrophages promote lymphangiogenesis and lymphoinvasion in breast most cancers. Cell Metab. 2019;30(5):917–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halabi WJ, et al. Ureteral accidents in colorectal surgical procedure: an evaluation of tendencies, outcomes, and danger elements over a 10-year interval in the US. Dis Colon Rectum. 2014;57(2):179–86.

    Article 
    PubMed 

    Google Scholar
     

  • Frankman EA, et al. Decrease urinary tract harm in girls in the US, 1979–2006. Am J Obstet Gynecol. 2010;202(5):495.

    Article 
    PubMed Central 

    Google Scholar
     

  • Wei Z, et al. Peroxidase-mimicking evodiamine/indocyanine inexperienced nanoliposomes for multimodal imaging-guided theranostics for oral squamous cell carcinoma. Bioact Mater. 2021;6(7):2144–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, et al. Picture-guided dendritic cell-based vaccine immunotherapy in murine carcinoma fashions. Am J Transl Res. 2017;9(10):4564–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Modo M, Hoehn M, Bulte JW. Mobile MR imaging. Mol Imaging. 2005;4(3):143–64.

    Article 
    PubMed 

    Google Scholar
     

  • Pan D, et al. Photoacoustic sentinel lymph node imaging with self-assembled copper neodecanoate nanoparticles. ACS Nano. 2012;6(2):1260–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong G, Antaris AL, Dai H. Close to-infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1(0010):1–22.

    Article 

    Google Scholar
     

  • Fan X, et al. Nanoprobes-assisted multichannel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes. Adv Sci (Weinh). 2021;8(9):2003972.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Z, et al. Thrombus-targeted nano-agents for NIR-II diagnostic fluorescence imaging-guided flap thromboembolism multi-model remedy. J Nanobiotechnol. 2022;20(1):447.

    Article 

    Google Scholar
     

  • Cai Y, et al. Fused-ring small-molecule-based bathochromic nano-agents for tumor NIR-II fluorescence imaging-guided photothermal/photodynamic remedy. ACS Appl Bio Mater. 2021;4(2):1942–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai Y, et al. Metastatic standing of sentinel lymph nodes in breast most cancers decided with photoacoustic microscopy by way of dual-targeting nanoparticles. Gentle Sci Appl. 2020;9:164.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, et al. pH-amplified CRET nanoparticles for in vivo imaging of tumor metastatic lymph nodes. Angew Chem Int Ed Engl. 2021;60(26):14512–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong L, Shuhendler AJ, Rao J. Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun. 2012;3:1193.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang C, et al. Close to-infrared upconversion multimodal nanoparticles for focused radionuclide remedy of breast most cancers lymphatic metastases. Entrance Immunol. 2022;13:1063678.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao D, et al. Particular prognosis of lymph node micrometastasis in breast most cancers by concentrating on activatable near-infrared fluorescence imaging. Biomaterials. 2022;282: 121388.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang F, et al. In vivo non-invasive confocal fluorescence imaging past 1,700 nm utilizing superconducting nanowire single-photon detectors. Nat Nanotechnol. 2022;17(6):653–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aime S, et al. Tunable imaging of cells labeled with MRI-PARACEST brokers. Angew Chem Int Ed Engl. 2005;44(12):1813–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Vries IJ, et al. Magnetic resonance monitoring of dendritic cells in melanoma sufferers for monitoring of mobile remedy. Nat Biotechnol. 2005;23(11):1407–13.

    Article 
    PubMed 

    Google Scholar
     

  • Go Y, et al. Tumor-associated macrophages prolong alongside lymphatic movement within the pre-metastatic lymph nodes of human gastric most cancers. Ann Surg Oncol. 2016;23(Suppl 2):S230–5.

    Article 
    PubMed 

    Google Scholar
     

  • Lu Y, et al. A therapeutic DC vaccine with maintained immunological exercise displays sturdy anti-tumor efficacy. J Management Launch. 2022;349:254–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perrin J, et al. Cell monitoring in most cancers immunotherapy. Entrance Med (Lausanne). 2020;7:34.

    Article 
    PubMed 

    Google Scholar
     

  • Kang SW, et al. Cell labeling and monitoring technique with out distorted indicators by phagocytosis of macrophages. Theranostics. 2014;4(4):420–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jendelova P, et al. Magnetic resonance monitoring of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat mind and spinal twine. J Neurosci Res. 2004;76(2):232–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoehn M, et al. Monitoring of implanted stem cell migration in vivo: a extremely resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A. 2002;99(25):16267–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crich SG, et al. Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as twin (MRI and fluorescence) agent. Magn Reson Med. 2004;51(5):938–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian R, et al. Multiplexed NIR-II probes for lymph node-invaded most cancers detection and imaging-guided surgical procedure. Adv Mater. 2020;32(11): e1907365.

    Article 
    PubMed 

    Google Scholar
     

  • Kircher MF, Gambhir SS, Grimm J. Noninvasive cell-tracking strategies. Nat Rev Clin Oncol. 2011;8(11):677–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bulte JW, Kraitchman DL. Iron oxide MR distinction brokers for molecular and mobile imaging. NMR Biomed. 2004;17(7):484–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stephan MT, et al. Therapeutic cell engineering with surface-conjugated artificial nanoparticles. Nat Med. 2010;16(9):1035–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swartz MA, Fleury ME. Interstitial movement and its results in smooth tissues. Annu Rev Biomed Eng. 2007;9:229–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicolas JF, Man B. Intradermal, epidermal and transcutaneous vaccination: from immunology to scientific apply. Professional Rev Vaccines. 2008;7(8):1201–14.

    Article 
    PubMed 

    Google Scholar
     

  • Leave a Reply