You are currently viewing Nanotechnology-based ocular drug supply methods: latest advances and future prospects | Journal of Nanobiotechnology

Nanotechnology-based ocular drug supply methods: latest advances and future prospects | Journal of Nanobiotechnology


  • Ma Y, Bao J, Zhang Y, et al. Mammalian near-infrared picture imaginative and prescient by means of injectable and self-powered retinal nanoantennae. Cell. 2019;177(2):243-255.e15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to beat ocular boundaries for drug penetration. Professional Opin Drug Metab Toxicol. 2020;16(10):885–906.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khiev D, Mohamed ZA, Vichare R, et al. Rising nano-formulations and nanomedicines functions for ocular drug supply. Nanomaterials (Basel). 2021;11(1):173.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kels BD, Grzybowski A, Grant-Kels JM. Human ocular anatomy. Clin Dermatol. 2015;33(2):140–6.

    Article 
    PubMed 

    Google Scholar
     

  • Nayak Okay, Misra M. Triamcinolone acetonide-loaded PEGylated microemulsion for the posterior section of eye. ACS Omega. 2020;5(14):7928–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug supply. Adv Drug Deliv Rev. 2006;58(11):1131–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai CH, Wang PY, Lin IC, Huang H, Liu GS, Tseng CL. Ocular drug supply: position of degradable polymeric nanocarriers for ophthalmic software. Int J Mol Sci. 2018;19(9):2830.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCluskey P, Powell RJ. The attention in systemic inflammatory ailments. Lancet. 2004;364(9451):2125–33.

    Article 
    PubMed 

    Google Scholar
     

  • Imaginative and prescient impairment and blindness. https://www.who.int/news-room/fact-sheets/element/blindness-and-visual-impairment Accessed 19 July 2022.

  • Brown L, Leck AK, Gichangi M, Burton MJ, Denning DW. The worldwide incidence and analysis of fungal keratitis. Lancet Infect Dis. 2021;21(3):e49–57.

    Article 
    PubMed 

    Google Scholar
     

  • Wielders LHP, Schouten JSAG, Winkens B, et al. European multicenter trial of the prevention of cystoid macular edema after cataract surgical procedure in nondiabetics: ESCRS PREMED research report 1. J Cataract Refract Surg. 2018;44(4):429–39.

    Article 
    PubMed 

    Google Scholar
     

  • Kang JM, Tanna AP. Glaucoma. Med Clin North Am. 2021;105(3):493–510.

    Article 
    PubMed 

    Google Scholar
     

  • Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and therapy of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86.

    Article 
    PubMed 

    Google Scholar
     

  • Cabrera FJ, Wang DC, Reddy Okay, Acharya G, Shin CS. Challenges and alternatives for drug supply to the posterior of the attention. Drug Discov At present. 2019;24(8):1679–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug supply methods formulated as eye drops. J Management Launch. 2020;321:1–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed S, Amin MM, Sayed S. Ocular drug supply: a complete overview. AAPS PharmSciTech. 2023;24(2):66.

    Article 
    PubMed 

    Google Scholar
     

  • Al-Kinani AA, Zidan G, Elsaid N, Seyfoddin A, Alani AWG, Alany RG. Ophthalmic gels: previous, current and future. Adv Drug Deliv Rev. 2018;126:113–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical supply. Int J Pharm. 2021;606:120873.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gholizadeh S, Wang Z, Chen X, Dana R, Annabi N. Superior nanodelivery platforms for topical ophthalmic drug supply. Drug Discov At present. 2021;26(6):1437–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akhter MH, Ahmad I, Alshahrani MY, et al. Drug supply challenges and present progress in nanocarrier-based ocular therapeutic system. Gels. 2022;8(2):82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug supply: present standing and translational alternative. RSC Adv. 2020;10(46):27835–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onugwu AL, Nwagwu CS, Onugwu OS, et al. Nanotechnology primarily based drug supply methods for the therapy of anterior section eye ailments. J Management Launch. 2023;354:465–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang-Mieler JJ, Rudeen KM, Liu W, Mieler WF. Advances in ocular drug supply methods. Eye (Lond). 2020;34(8):1371–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaneev A, Tikhomirova V, Chesnokova N, et al. Nanotechnology for topical drug supply to the anterior section of the attention. Int J Mol Sci. 2021;22(22):12368.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta A, Kafetzis KN, Tagalakis AD, Yu-Wai-Man C. RNA therapeutics in ophthalmology—translation to scientific trials. Exp Eye Res. 2021;205:108482.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adrianto MF, Annuryanti F, Wilson CG, Sheshala R, Thakur RRS. In vitro dissolution testing fashions of ocular implants for posterior section drug supply. Drug Deliv Transl Res. 2022;12(6):1355–75.

    Article 
    PubMed 

    Google Scholar
     

  • Kumaran Okay, Karthika Okay, Padmapreetha J. Comparative overview on standard and superior ocular drug supply formulations. Int J Pharm Pharm Sci. 2010;2(4):1–5.


    Google Scholar
     

  • Patel A, Cholkar Okay, Agrahari V, Mitra AK. Ocular drug supply methods: an outline. World J Pharmacol. 2013;2(2):47–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bravo-Osuna I, Andrés-Guerrero V, Arranz-Romera A, Esteban-Pérez S, Molina-Martínez IT, Herrero-Vanrell R. Microspheres as intraocular therapeutic instruments in power ailments of the optic nerve and retina. Adv Drug Deliv Rev. 2018;126:127–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang H, Yang XR, Li HL, Lu HS, Oswald J, Liu YM, et al. iRGD adorned liposomes: a novel actively penetrating topical ocular drug supply technique. Nano Res. 2020;13(11):3105–9.

    Article 
    CAS 

    Google Scholar
     

  • Morrison PW, Khutoryanskiy VV. Advances in ophthalmic drug supply. Ther Deliv. 2014;5(12):1297–315.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pflugfelder SC, Stern ME. Organic capabilities of tear movie. Exp Eye Res. 2020;197:108115.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imperiale JC, Acosta GB, Sosnik A. Polymer-based carriers for ophthalmic drug supply. J Management Launch. 2018;285:106–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wels M, Roels D, Raemdonck Okay, De Smedt SC, Sauvage F. Challenges and techniques for the supply of biologics to the cornea. J Management Launch. 2021;333:560–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durairaj C. Ocular pharmacokinetics. Handb Exp Pharmacol. 2017;242:31–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bachu RD, Chowdhury P, Al-Saedi ZHF, Karla PK, Boddu SHS. Ocular drug supply barriers-role of nanocarriers within the therapy of anterior section ocular ailments. Pharmaceutics. 2018;10(1):28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agrahari V, Mandal A, Agrahari V, et al. A complete perception on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim YC, Chiang B, Wu X, Prausnitz MR. Ocular supply of macromolecules. J Management Launch. 2014;190:172–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the cornea: construction, perform, and improvement. Prog Mol Biol Transl Sci. 2015;134:7–23.

    Article 
    PubMed 

    Google Scholar
     

  • Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug supply. AAPS J. 2010;12(3):348–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janagam DR, Wu L, Lowe TL. Nanoparticles for drug supply to the anterior section of the attention. Adv Drug Deliv Rev. 2017;122:31–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang T, Xiang CD, Gale D, Carreiro S, Wu EY, Zhang EY. Drug transporter and cytochrome P450 mRNA expression in human ocular boundaries: implications for ocular drug disposition. Drug Metab Dispos. 2008;36(7):1300–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kölln C, Reichl S. mRNA expression of metabolic enzymes in human cornea, corneal cell traces, and hemicornea constructs. J Ocul Pharmacol Ther. 2012;28(3):271–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karla PK, Earla R, Boddu SH, Johnston TP, Pal D, Mitra A. Molecular expression and practical proof of a drug efflux pump (BCRP) in human corneal epithelial cells. Curr Eye Res. 2009;34(1):1–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed S, Amin MM, El-Korany SM, Sayed S. Corneal focused fenticonazole nitrate-loaded novasomes for the administration of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments. Drug Deliv. 2022;29(1):2428–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loftsson T, Stefánsson E. Cyclodextrins and topical drug supply to the anterior and posterior segments of the attention. Int J Pharm. 2017;531(2):413–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug supply boundaries by means of using bodily forces. Adv Drug Deliv Rev. 2018;126:96–112.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug supply: impacts of membranes and boundaries. Professional Opin Drug Deliv. 2008;5(5):567–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bock F, Maruyama Okay, Regenfuss B, et al. Novel anti(lymph)angiogenic therapy methods for corneal and ocular floor ailments. Prog Retin Eye Res. 2013;34:89–124.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shivhare R, Pathak A, Shrivastava N, Singh C, Tiwari G, Goyal R. An replace overview on novel advancedocular drug supply system. World J Pharm Pharm Sci. 2012;1:545–68.

    CAS 

    Google Scholar
     

  • Watsky MA, Jablonski MM, Edelhauser HF. Comparability of conjunctival and corneal floor areas in rabbit and human. Curr Eye Res. 1988;7(5):483–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramsay E, Ruponen M, Picardat T, et al. Affect of chemical construction on conjunctival drug permeability: adopting porcine conjunctiva and cassette dosing for development of in silico mannequin. J Pharm Sci. 2017;106(9):2463–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed I, Gokhale RD, Shah MV, Patton TF. Physicochemical determinants of drug diffusion throughout the conjunctiva, sclera, and cornea. J Pharm Sci. 1987;76(8):583–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gote V, Sikder S, Sicotte J, Pal D. Ocular drug supply: current improvements and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rada JA, Shelton S, Norton TT. The sclera and myopia. Exp Eye Res. 2006;82(2):185–200.

    Article 
    PubMed 

    Google Scholar
     

  • Solar S, Li J, Li X, et al. Episcleral drug movie for better-targeted ocular drug supply and managed launch utilizing multilayered poly-ε-caprolactone (PCL). Acta Biomater. 2016;37:143–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mofidfar M, Abdi B, Ahadian S, et al. Drug supply to the anterior section of the attention: a overview of present and future therapy methods. Int J Pharm. 2021;607:120924.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coca-Prados M. The blood-aqueous barrier in well being and illness. J Glaucoma. 2014;23(8 Suppl 1):S36–8.

    Article 
    PubMed 

    Google Scholar
     

  • Dubald M, Bourgeois S, Andrieu V, Fessi H. Ophthalmic drug supply methods for antibiotherapy-a overview. Pharmaceutics. 2018;10(1):10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: idea in formulations and characterization strategies for ocular drug supply. J Management Launch. 2020;328:895–916.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tisi A, Feligioni M, Passacantando M, Ciancaglini M, Maccarone R. The influence of oxidative stress on blood-retinal barrier physiology in age-related macular degeneration. Cells. 2021;10(1):64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Díaz-Coránguez M, Ramos C, Antonetti DA. The interior blood-retinal barrier: mobile foundation and improvement. Imaginative and prescient Res. 2017;139:123–37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duvvuri S, Majumdar S, Mitra AK. Drug supply to the retina: challenges and alternatives. Professional Opin Biol Ther. 2003;3(1):45–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bochot A, Couvreur P, Fattal E. Intravitreal administration of antisense oligonucleotides: potential of liposomal supply. Prog Retin Eye Res. 2000;19(2):131–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge Y, Zhang A, Solar R, et al. Penetratin-modified lutein nanoemulsion in-situ gel for the therapy of age-related macular degeneration. Professional Opin Drug Deliv. 2020;17(4):603–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and therapy of glaucoma: a overview. JAMA. 2014;311(18):1901–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. World prevalence of glaucoma and projections of glaucoma burden by means of 2040: a scientific overview and meta-analysis. Ophthalmology. 2014;121(11):2081–90.

    Article 
    PubMed 

    Google Scholar
     

  • Gagnon MM, Boisjoly HM, Brunette I, Charest M, Amyot M. Corneal endothelial cell density in glaucoma. Cornea. 1997;16(3):314–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Zhang Z, Ye L, et al. Acute ocular hypertension disrupts barrier integrity and pump perform in rat corneal endothelial cells. Sci Rep. 2017;7(1):6951.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renner M, Stute G, Alzureiqi M, et al. Optic nerve degeneration after retinal ischemia/reperfusion in a rodent mannequin. Entrance Cell Neurosci. 2017;11:254.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardigos J, Ferreira Q, Crisóstomo S, et al. Nanotechnology-ocular gadgets for glaucoma therapy: a literature overview. Curr Eye Res. 2019;44(2):111–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subrizi A, Del Amo EM, Korzhikov-Vlakh V, Tennikova T, Ruponen M, Urtti A. Design rules of ocular drug supply methods: significance of drug payload, launch charge, and materials properties. Drug Discov At present. 2019;24(8):1446–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quigley HA. twenty first century glaucoma care. Eye (Lond). 2019;33(2):254–60.

    Article 
    PubMed 

    Google Scholar
     

  • Wong WL, Su X, Li X, et al. World prevalence of age-related macular degeneration and illness burden projection for 2020 and 2040: a scientific overview and meta-analysis. Lancet Glob Well being. 2014;2(2):e106–16.

    Article 
    PubMed 

    Google Scholar
     

  • Thomas CJ, Mirza RG, Gill MK. Age-related macular degeneration. Med Clin North Am. 2021;105(3):473–91.

    Article 
    PubMed 

    Google Scholar
     

  • Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59.

    Article 
    PubMed 

    Google Scholar
     

  • Bakri SJ, Thorne JE, Ho AC, et al. Security and efficacy of anti-vascular endothelial progress issue therapies for neovascular age-related macular degeneration: a report by the American academy of ophthalmology. Ophthalmology. 2019;126(1):55–63.

    Article 
    PubMed 

    Google Scholar
     

  • Ogurtsova Okay, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: world estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–36.

    Article 
    PubMed 

    Google Scholar
     

  • Tan TE, Wong TY. Diabetic retinopathy: Wanting ahead to 2030. Entrance Endocrinol (Lausanne). 2023;13:1077669.

    Article 
    PubMed 

    Google Scholar
     

  • Ajlan RS, Silva PS, Solar JK. Vascular endothelial progress issue and diabetic retinal illness. Semin Ophthalmol. 2016;31(1–2):40–8.

    Article 
    PubMed 

    Google Scholar
     

  • Madjedi Okay, Pereira A, Ballios BG, et al. Switching between anti-VEGF brokers within the administration of refractory diabetic macular edema: a scientific overview. Surv Ophthalmol. 2022;67(5):1364–72.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Wu N. Progress of nanotechnology in diabetic retinopathy therapy. Int J Nanomedicine. 2021;16:1391–403.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pflugfelder SC, de Paiva CS. The pathophysiology of dry eye illness: what we all know and future instructions for analysis. Ophthalmology. 2017;124(11S):S4–13.

    Article 
    PubMed 

    Google Scholar
     

  • Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15(3):276–83.

    Article 
    PubMed 

    Google Scholar
     

  • Roda M, Corazza I, Bacchi Reggiani ML, et al. dry eye illness and tear cytokine levels-a meta-analysis. Int J Mol Sci. 2020;21(9):3111.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asiedu Okay, Dzasimatu SK, Kyei S. Affect of dry eye on psychosomatic signs and high quality of life in a wholesome youthful scientific pattern. Eye Contact Lens. 2018;44(Suppl 2):S404–9.

    Article 
    PubMed 

    Google Scholar
     

  • Na KS, Han Okay, Park YG, Na C, Joo CK. Despair, stress, high quality of life, and dry eye illness in Korean ladies: a population-based research. Cornea. 2015;34(7):733–8.

    Article 
    PubMed 

    Google Scholar
     

  • Perez VL, Stern ME, Pflugfelder SC. Inflammatory foundation for dry eye illness flares. Exp Eye Res. 2020;201:108294.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones L, Downie LE, Korb D, et al. TFOS DEWS II administration and remedy report. Ocul Surf. 2017;15(3):575–628.

    Article 
    PubMed 

    Google Scholar
     

  • Wang L, Zhou MB, Zhang H. The rising position of topical ocular medicine to focus on the posterior eye. Ophthalmol Ther. 2021;10(3):465–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Lockwood A. Topical ocular drug supply methods: Improvements for an unmet want. Exp Eye Res. 2022;218:109006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen J, Lu GW, Hughes P. Focused ocular drug supply with pharmacokinetic/pharmacodynamic issues. Pharm Res. 2018;35(11):217.

    Article 
    PubMed 

    Google Scholar
     

  • Maulvi FA, Shetty KH, Desai DT, Shah DO, Willcox MDP. Current advances in ophthalmic preparations: ocular boundaries, dosage kinds and routes of administration. Int J Pharm. 2021;608:121105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gause S, Hsu KH, Shafor C, Dixon P, Powell KC, Chauhan A. Mechanistic modeling of ophthalmic drug supply to the anterior chamber by eye drops and call lenses. Adv Colloid Interface Sci. 2016;233:139–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grassiri B, Zambito Y, Bernkop-Schnürch A. Methods to extend the residence time of drug supply methods on ocular floor. Adv Colloid Interface Sci. 2021;288:102342.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Brien Laramy MN, Nagapudi Okay. Lengthy-acting ocular drug supply applied sciences with scientific precedent. Professional Opin Drug Deliv. 2022;19(10):1285–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug supply. Professional Opin Drug Deliv. 2004;1(1):99–114.

    Article 
    PubMed 

    Google Scholar
     

  • Le NT, Kroeger ZA, Lin WV, Khanani AM, Weng CY. Novel therapies for diabetic macular edema and proliferative diabetic retinopathy. Curr Diab Rep. 2021;21(10):43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barocas VH, Balachandran RK. Sustained transscleral drug supply. Professional Opin Drug Deliv. 2008;5(1):1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiang B, Jung JH, Prausnitz MR. The suprachoroidal area as a route of administration to the posterior section of the attention. Adv Drug Deliv Rev. 2018;126:58–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nayak Okay, Misra M. A overview on latest drug supply methods for posterior section of eye. Biomed Pharmacother. 2018;107:1564–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liebmann JM, Barton Okay, Weinreb RN, et al. Evolving tips for intracameral injection. J Glaucoma. 2020;29(Suppl 1):S1–7.

    Article 
    PubMed 

    Google Scholar
     

  • Gaballa SA, Kompella UB, Elgarhy O, et al. Corticosteroids in ophthalmology: drug supply improvements, pharmacology, scientific functions, and future views. Drug Deliv Transl Res. 2021;11(3):866–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lane SS, Osher RH, Masket S, Belani S. Analysis of the security of prophylactic intracameral moxifloxacin in cataract surgical procedure. J Cataract Refract Surg. 2008;34(9):1451–9.

    Article 
    PubMed 

    Google Scholar
     

  • Braga-Mele R, Chang DF, Henderson BA, et al. Intracameral antibiotics: security, efficacy, and preparation. J Cataract Refract Surg. 2014;40(12):2134–42.

    Article 
    PubMed 

    Google Scholar
     

  • Labetoulle M, Findl O, Malecaze F, et al. Analysis of the efficacy and security of a standardised intracameral mixture of mydriatics and anaesthetics for cataract surgical procedure. Br J Ophthalmol. 2016;100(7):976–85.

    Article 
    PubMed 

    Google Scholar
     

  • Behndig A, Cochener B, Güell JL, et al. Endophthalmitis prophylaxis in cataract surgical procedure: overview of present observe patterns in 9 European international locations. J Cataract Refract Surg. 2013;39(9):1421–31.

    Article 
    PubMed 

    Google Scholar
     

  • Grzybowski A, Brona P, Zeman L, Stewart MW. Generally used intracameral antibiotics for endophthalmitis prophylaxis: a literature overview. Surv Ophthalmol. 2021;66(1):98–108.

    Article 
    PubMed 

    Google Scholar
     

  • Keating GM. Intracameral cefuroxime. Medication. 2013;73(2):179–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho JW, Afshari NA. Advances in cataract surgical procedure: preserving the corneal endothelium. Curr Opin Ophthalmol. 2015;26(1):22–7.

    Article 
    PubMed 

    Google Scholar
     

  • Vazirani J, Basu S. Position of topical, subconjunctival, intracameral, and irrigative antibiotics in cataract surgical procedure. Curr Opin Ophthalmol. 2013;24(1):60–5.

    Article 
    PubMed 

    Google Scholar
     

  • Del Amo EM, Rimpelä AK, Heikkinen E, et al. Pharmacokinetic facets of retinal drug supply. Prog Retin Eye Res. 2017;57:134–85.

    Article 
    PubMed 

    Google Scholar
     

  • Jonas JB, Spandau UH, Schlichtenbrede F. Brief-term issues of intravitreal injections of triamcinolone and bevacizumab. Eye (Lond). 2008;22(4):590–1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ilochonwu BC, Urtti A, Hennink WE, Vermonden T. Intravitreal hydrogels for sustained launch of therapeutic proteins. J Management Launch. 2020;326:419–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang Z, Fan X, Chen Y, Gu P. Ocular Nanomedicine. Adv Sci (Weinh). 2022;9(15):e2003699.

    Article 
    PubMed 

    Google Scholar
     

  • Gross A, Cestari DM. Optic neuropathy following retrobulbar injection: a overview. Semin Ophthalmol. 2014;29(5–6):434–9.

    Article 
    PubMed 

    Google Scholar
     

  • Alhassan MB, Kyari F, Ejere HO. 2015 Peribulbar versus retrobulbar anaesthesia for cataract surgical procedure. Cochrane Database Syst Rev. 2015;7:CD004083.


    Google Scholar
     

  • Hayashi Okay, Hayashi H. Intravitreal versus retrobulbar injections of triamcinolone for macular edema related to department retinal vein occlusion. Am J Ophthalmol. 2005;139(6):972–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safi M, Ang MJ, Patel P, Silkiss RZ. Rhino-orbital-cerebral mucormycosis (ROCM) and related cerebritis handled with adjuvant retrobulbar amphotericin B. Am J Ophthalmol Case Rep. 2020;19:100771.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cosgrove R, Rossow T, Cosgrove M, Siegel M. Suspected systemic uptake of chlorpromazine after retrobulbar injection. Am J Ophthalmol Case Rep. 2020;19:100801.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urtti A, Salminen L. Minimizing systemic absorption of topically administered ophthalmic medicine. Surv Ophthalmol. 1993;37(6):435–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duncan TE. Unintended effects of topical ocular timolol. Am J Ophthalmol. 1983;95(4):562–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson JA. Systemic absorption of topical ocularly utilized epinephrine and dipivefrin. Arch Ophthalmol. 1980;98(2):350–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inoue Okay. Managing opposed results of glaucoma medicines. Clin Ophthalmol. 2014;8:903–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janoria KG, Gunda S, Boddu SH, Mitra AK. Novel approaches to retinal drug supply. Professional Opin Drug Deliv. 2007;4(4):371–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han H, Li S, Xu M, et al. Polymer- and lipid-based nanocarriers for ocular drug supply: present standing and future views. Adv Drug Deliv Rev. 2023;196:114770.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine-based options for ocular ailments. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(4):e1548.

    Article 
    PubMed 

    Google Scholar
     

  • Grimaudo MA, Pescina S, Padula C, et al. Topical software of polymeric nanomicelles in ophthalmology: a overview on analysis efforts for the noninvasive supply of ocular therapeutics. Professional Opin Drug Deliv. 2019;16(4):397–413.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaishya RD, Khurana V, Patel S, Mitra AK. Managed ocular drug supply with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(5):422–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Q, Rijcken CJ, van Gaal E, et al. Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical functions. J Management Launch. 2016;244(Pt B):314–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bourzac Okay. Nanotechnology: carrying medicine. Nature. 2012;491(7425):S58–60.

    Article 
    PubMed 

    Google Scholar
     

  • Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug supply: methods and underlying rules. Nanomedicine (Lond). 2010;5(3):485–505.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torchilin VP. Construction and design of polymeric surfactant-based drug supply methods. J Management Launch. 2001;73(2–3):137–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rangel-Yagui CO, Pessoa A Jr, Tavares LC. Micellar solubilization of medicine. J Pharm Pharm Sci. 2005;8(2):147–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Jiang L, Shen Q, Shen J, Han Y, Zhang H. Investigation on the self-assembled behaviors of C18 unsaturated fatty acids in arginine aqueous resolution. RSC Adv. 2017;7(66):41561–72.

    Article 
    CAS 

    Google Scholar
     

  • Fameau AL, Arnould A, Lehmann M, von Klitzing R. Photoresponsive self-assemblies primarily based on fatty acids. Chem Commun. 2015;51(14):2907–10.

    Article 
    CAS 

    Google Scholar
     

  • Ghezzi M, Pescina S, Delledonne A, et al. Enchancment of imiquimod solubilization and pores and skin retention through TPGS micelles: exploiting the co-solubilizing impact of oleic acid. Pharmaceutics. 2021;13(9):1476.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tampucci S, Guazzelli L, Burgalassi S, et al. pH-responsive nanostructures primarily based on floor energetic fatty acid-protic ionic liquids for imiquimod supply in pores and skin most cancers topical remedy. Pharmaceutics. 2020;12(11):1078.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghezzi M, Ferraboschi I, Delledonne A, et al. Cyclosporine-loaded micelles for ocular supply: investigating the penetration mechanisms. J Management Launch. 2022;349:744–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Solar L, Zhou L, Cheng Y, Cao F. Useful chitosan oligosaccharide nanomicelles for topical ocular drug supply of dexamethasone. Carbohydr Polym. 2020;227:115356.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, Seah I, Xue Okay, et al. Antiangiogenic nanomicelles for the topical supply of aflibercept to deal with retinal neovascular illness. Adv Mater. 2022;34(25):e2108360.

    Article 
    PubMed 

    Google Scholar
     

  • Peng C, Kuang L, Zhao J, Ross AE, Wang Z, Ciolino JB. Bibliometric and visualized evaluation of ocular drug supply from 2001 to 2020. J Management Launch. 2022;345:625–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Zheng S, Hu X, et al. Advances within the analysis of bioinks primarily based on pure collagen, polysaccharide and their derivatives for pores and skin 3D bioprinting. Polymers (Basel). 2020;12(6):1237.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akhter S, Anwar M, Siddiqui MA, et al. Enhancing the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: formulation improvement, in-vitro and in-vivo research. Colloids Surf B Biointerfaces. 2016;148:19–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their focused supply functions. Molecules. 2020;25(9):2193.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological boundaries of the attention—Half I—Obstacles and figuring out components in ocular supply. Eur J Pharm Biopharm. 2017;110:70–5.

    Article 
    PubMed 

    Google Scholar
     

  • Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug supply. Drug Discov At present. 2019;24(8):1524–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang C, Cano-Vega MA, Yue F, et al. Dibenzazepine-loaded nanoparticles induce native browning of white adipose tissue to counteract weight problems. Mol Ther. 2022;30(1):502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang C, Kuang L, Merkel MP, et al. Biodegradable polymeric microsphere-based drug supply for inductive browning of fats. Entrance Endocrinol (Lausanne). 2015;6:169.

    Article 
    PubMed 

    Google Scholar
     

  • Pandit J, Sultana Y, Aqil M. Chitosan coated nanoparticles for environment friendly supply of bevacizumab within the posterior ocular tissues through subconjunctival administration. Carbohydr Polym. 2021;267:118217.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim SN, Min CH, Kim YK, et al. Iontophoretic ocular supply of latanoprost-loaded nanoparticles through skin-attached electrodes. Acta Biomater. 2022;144:32–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen DD, Luo LJ, Lai JY. Results of shell thickness of hole poly(lactic acid) nanoparticles on sustained drug supply for pharmacological therapy of glaucoma. Acta Biomater. 2020;111:302–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnichels S, Hurst J, de Vries JW, et al. Improved therapy choices for glaucoma with brimonidine-loaded lipid DNA nanoparticles. ACS Appl Mater Interfaces. 2021;13(8):9445–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Liangbo, Feng Wu, Pang Yan, Yan Dan, Zhang Siyi, Chen Fangjie, Nianxuan Wu, Gong Danni, Liu Jinyao, Yao Fu, Fan Xianqun. Therapeutic nanocoating of ocular floor. Nano At present. 2021;41:101309.

    Article 
    CAS 

    Google Scholar
     

  • Li M, Xu Z, Zhang L, et al. Focused noninvasive therapy of choroidal neovascularization by hybrid cell-membrane-cloaked biomimetic nanoparticles. ACS Nano. 2021;15(6):9808–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peltonen L, Hirvonen J. Drug nanocrystals—versatile choice for formulation of poorly soluble supplies. Int J Pharm. 2018;537(1–2):73–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Kassas R, Bansal M, Shaw J. Nanosizing strategies for enhancing bioavailability of medicine. J Management Launch. 2017;260:202–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Jiao J, Niu M, et al. Ten years of data of nano-carrier primarily based drug supply methods in ophthalmology: present proof, challenges, and future potential. Int J Nanomed. 2021;16:6497–530.

    Article 

    Google Scholar
     

  • Tai L, Liu C, Jiang Okay, et al. A novel penetratin-modified complicated for noninvasive intraocular supply of antisense oligonucleotides. Int J Pharm. 2017;529(1–2):347–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Josyula A, Omiadze R, Parikh Okay, et al. An ion-paired moxifloxacin nanosuspension eye drop gives improved prevention and therapy of ocular an infection. Bioeng Transl Med. 2021;6(3):e10238.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Millán E, Quintáns-Carballo M, Otero-Espinar FJ. Improved launch of triamcinolone acetonide from medicated comfortable contact lenses loaded with drug nanosuspensions. Int J Pharm. 2017;525(1):226–36.

    Article 
    PubMed 

    Google Scholar
     

  • Yan R, Xu L, Wang Q, Wu Z, Zhang H, Gan L. Cyclosporine A nanosuspensions for ophthalmic supply: a comparative research between cationic nanoparticles and drug-core mucus penetrating nanoparticles. Mol Pharm. 2021;18(12):4290–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y, Vora LK, Mishra D, et al. Nanosuspension-loaded dissolving bilayer microneedles for hydrophobic drug supply to the posterior section of the attention. Biomater Adv. 2022;137:212767.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacob S, Nair AB, Shah J. Rising position of nanosuspensions in drug supply methods. Biomater Res. 2020;24:3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rimple, Newton MJ. Affect of ocular appropriate lipoids and castor oil in fabrication of brimonidine tartrate nanoemulsions by 33 full factorial design. Current Pat Inflamm Allergy Drug Discov. 2018;12(2):169–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qamar Z, Qizilbash FF, Iqubal MK, et al. Nano-based drug supply system: latest methods for the therapy of ocular illness and future perspective. Current Pat Drug Deliv Formul. 2019;13(4):246–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh Y, Meher JG, Raval Okay, et al. Nanoemulsion: ideas, improvement and functions in drug supply. J Management Launch. 2017;252:28–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lallemand F, Daull P, Benita S, Buggage R, Garrigue JS. Efficiently enhancing ocular drug supply utilizing the cationic nanoemulsion, novasorb. J Drug Deliv. 2012;2012:604204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and functions. Delicate Matter. 2016;12(11):2826–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daull P, Lallemand F, Garrigue JS. Advantages of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug supply. J Pharm Pharmacol. 2014;66(4):531–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Nanoemulsion as a possible ophthalmic supply system for dorzolamide hydrochloride. AAPS PharmSciTech. 2009;10(3):808–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurišić Dukovski B, Juretić M, Bračko D, et al. Useful ibuprofen-loaded cationic nanoemulsion: improvement and optimization for dry eye illness therapy. Int J Pharm. 2020;576:118979.

    Article 
    PubMed 

    Google Scholar
     

  • Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics within the aqueous humor of rabbits. Int J Pharm. 2013;443(1–2):293–305.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahboobian MM, Mohammadi M, Mansouri Z. Growth of thermosensitive in situ gel nanoemulsions for ocular supply of acyclovir. J Drug Deliv Sci Technol. 2020;55:101400.

    Article 
    CAS 

    Google Scholar
     

  • Bhalerao H, Koteshwara KB, Chandran S. Design, optimisation and analysis of in situ gelling nanoemulsion formulations of brinzolamide. Drug Deliv Transl Res. 2020;10(2):529–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Youssef AAA, Cai C, Dudhipala N, Majumdar S. Design of topical ocular ciprofloxacin nanoemulsion for the administration of bacterial keratitis. Prescribed drugs (Basel). 2021;14(3):210.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ismail A, Nasr M, Sammour O. Nanoemulsion as a possible and biocompatible provider for ocular supply of travoprost: improved pharmacokinetic/pharmacodynamic properties. Int J Pharm. 2020;583:119402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Üstündag-Okur N, Gökçe EH, Eğrilmez S, Özer Ö, Ertan G. Novel ofloxacin-loaded microemulsion formulations for ocular supply. J Ocul Pharmacol Ther. 2014;30(4):319–32.

    Article 
    PubMed 

    Google Scholar
     

  • Kale SN, Deore SL. Emulsion micro emulsion and nano emulsion: a overview. Syst Rev Pharm. 2016;8:39–47.

    Article 

    Google Scholar
     

  • Cunha Júnior AdS, Fialho SL, Carneiro LB, Oréfice F. Microemulsions as drug supply methods for topical ocular administration. Arquivos Brasileiros de Oftalmologia. 2003;66:385–91.

    Article 

    Google Scholar
     

  • Üstündağ Okur N, Er S, Çağlar E, Ekmen T, Sala F. Formulation of microemulsions for dermal supply of Cephalexin. Acta Pharm Sci. 2017;55(4):27.


    Google Scholar
     

  • Mahran A, Ismail S, Allam AA. Growth of triamcinolone acetonide-loaded microemulsion as a potential ophthalmic supply system for therapy of uveitis: in vitro and in vivo analysis. Pharmaceutics. 2021;13(4):444.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santonocito M, Zappulla C, Viola S, et al. Evaluation of a brand new nanostructured microemulsion system for ocular supply of sorafenib to posterior section of the attention. Int J Mol Sci. 2021;22(9):4404.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rupenthal ID, Agarwal P, Uy B, et al. Preparation and characterisation of a cyclodextrin-complexed mānuka honey microemulsion for eyelid software. Pharmaceutics. 2022;14(7):1493.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deepak Amar, Goyal AK, Rath G. Nanofiber in transmucosal drug supply. J Drug Deliv Sci Technol. 2018;43(2017):379–87.

    Article 
    CAS 

    Google Scholar
     

  • Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Current developments of nanostructures for the ocular supply of pure compounds. Entrance Chem. 2022;10:850757.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug supply functions. J Management Launch. 2014;185:12–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zupančič Š, Sinha-Ray S, Sinha-Ray S, Kristl J, Yarin AL. Lengthy-term sustained ciprofloxacin launch from pmma and hydrophilic polymer blended nanofibers. Mol Pharm. 2016;13(1):295–305.

    Article 
    PubMed 

    Google Scholar
     

  • Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug supply. J Management Launch. 2016;240:77–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Da Silva GR, Lima TH, Fernandes-Cunha GM, et al. Ocular biocompatibility of dexamethasone acetate loaded poly(ɛ-caprolactone) nanofibers. Eur J Pharm Biopharm. 2019;142:20–30.

    Article 
    PubMed 

    Google Scholar
     

  • Carracedo-Rodríguez G, Martínez-Águila A, Rodriguez-Pomar C, Bodas-Romero J, Sanchez-Naves J, Pintor J. Impact of dietary complement primarily based on melatonin on the intraocular stress in normotensive topics. Int Ophthalmol. 2020;40(2):419–22.

    Article 
    PubMed 

    Google Scholar
     

  • Ferreira de Melo IM, Martins Ferreira CG, da Silva Lima, Souza EH, et al. Melatonin regulates the expression of inflammatory cytokines, VEGF and apoptosis in diabetic retinopathy in rats. Chem Biol Work together. 2020;327:109183.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harpsøe NG, Andersen LP, Gögenur I, Rosenberg J. Scientific pharmacokinetics of melatonin: a scientific overview. Eur J Clin Pharmacol. 2015;71(8):901–9.

    Article 
    PubMed 

    Google Scholar
     

  • Andersen LP, Werner MU, Rosenkilde MM, et al. Pharmacokinetics of oral and intravenous melatonin in wholesome volunteers. BMC Pharmacol Toxicol. 2016;17:8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romeo A, Kazsoki A, Omer S, et al. Formulation and characterization of electrospun nanofibers for melatonin ocular supply. Pharmaceutics. 2023;15(4):1296.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohde F, Walther M, Wächter J, Knetzger N, Lotz C, Windbergs M. In-situ tear fluid dissolving nanofibers allow extended viscosity-enhanced twin drug supply to the attention. Int J Pharm. 2022;616:121513.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tawfik EA, Alshamsan A, Abul Kalam M, et al. In vitro and in vivo organic evaluation of twin drug-loaded coaxial nanofibers for the therapy of corneal abrasion. Int J Pharm. 2021;604:120732.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esentürk I, Erdal MS, Güngör S. Electrospinning methodology to provide drug-loaded nanofibers for topical/transdermal drug supply functions. J Fac Pharm Istanb Univ. 2016;46:49–64.


    Google Scholar
     

  • Farokhi M, Mottaghitalab F, Reis RL, Ramakrishna S, Kundu SC. Functionalized silk fibroin nanofibers as drug carriers: benefits and challenges. J Management Launch. 2020;321:324–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sridhar R, Lakshminarayanan R, Madhaiyan Okay, Amutha Barathi V, Lim KH, Ramakrishna S. Electrosprayed nanoparticles and electrospun nanofibers primarily based on pure supplies: functions in tissue regeneration, drug supply and prescription drugs. Chem Soc Rev. 2015;44(3):790–814.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yaylaci S, Dinç E, Aydın B, Tekinay AB, Guler MO. Peptide nanofiber system for sustained supply of anti-vegf proteins to the attention vitreous. Pharmaceutics. 2023;15(4):1264.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi X, Zhou T, Huang S, et al. An electrospun scaffold functionalized with a ROS-scavenging hydrogel stimulates ocular wound therapeutic. Acta Biomater. 2023;158:266–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei S, Yin R, Tang T, et al. Fuel-permeable, irritation-free, clear hydrogel contact lens gadgets with metal-coated nanofiber mesh for eye interfacing. ACS Nano. 2019;13(7):7920–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, functions, and properties. Nanoscale Res Lett. 2014;9(1):247.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kambhampati SP, Kannan RM. Dendrimer nanoparticles for ocular drug supply. J Ocul Pharmacol Ther. 2013;29(2):151–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spataro G, Malecaze F, Turrin CO, et al. Designing dendrimers for ocular drug supply. Eur J Med Chem. 2010;45(1):326–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaikh A, Kesharwani P, Gajbhiye V. Dendrimer as a momentous software in tissue engineering and regenerative drugs. J Management Launch. 2022;346:328–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romanowski EG, Yates KA, Paull JRA, Heery GP, Shanks RMQ. Topical astodrimer sodium, a non-toxic polyanionic dendrimer, demonstrates antiviral exercise in an experimental ocular adenovirus an infection mannequin. Molecules. 2021;26(11):3419.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kambhampati SP, Bhutto IA, Wu T, et al. Systemic dendrimer nanotherapies for focused suppression of choroidal irritation and neovascularization in age-related macular degeneration. J Management Launch. 2021;335:527–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Li B, Huang D, et al. Nano-in-nano dendrimer gel particles for environment friendly topical supply of antiglaucoma medicine into the attention. Chem Eng J. 2021;425:130498.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their software in drug supply. Pharmaceutics. 2019;11(2):55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keam SJ, Scott LJ, Curran MP. Verteporfin: a overview of its use within the administration of subfoveal choroidal neovascularisation. Medication. 2003;63(22):2521–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tavakoli S, Peynshaert Okay, Lajunen T, et al. Ocular boundaries to retinal supply of intravitreal liposomes: influence of vitreoretinal interface. J Management Launch. 2020;328:952–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular methods in ocular drug supply: an outline. Int J Pharm. 2004;269(1):1–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lajunen T, Nurmi R, Kontturi L, et al. Gentle activated liposomes: performance and prospects in ocular drug supply. J Management Launch. 2016;244(Pt B):157–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Wu J, Lin X, et al. Tacrolimus loaded cationic liposomes for dry eye therapy. Entrance Pharmacol. 2022;13:838168.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug supply. Drug Discov At present. 2008;13(3–4):144–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Hanning S, Falconer J, Locke M, Wen J. Current advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and beauty functions. Eur J Pharm Biopharm. 2019;144:18–39.

    Article 
    PubMed 

    Google Scholar
     

  • Gan L, Wang J, Jiang M, et al. Current advances in topical ophthalmic drug supply with lipid-based nanocarriers. Drug Discov At present. 2013;18(5–6):290–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma A, Tiwari A, Saraf S, Panda PK, Jain A, Jain SK. Rising potential of niosomes in ocular supply. Professional Opin Drug Deliv. 2021;18(1):55–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farha AK, Gan RY, Li HB, et al. The anticancer potential of the dietary polyphenol rutin: present standing, challenges, and views. Crit Rev Meals Sci Nutr. 2022;62(3):832–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wichayapreechar P, Anuchapreeda S, Phongpradist R, Rungseevijitprapa W, Ampasavate C. Dermal focusing on of Centella asiatica extract utilizing hyaluronic acid floor modified niosomes. J Liposome Res. 2020;30(2):197–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kattar A, Quelle-Regaldie A, Sánchez L, Concheiro A, Alvarez-Lorenzo C. Formulation and characterization of epalrestat-loaded polysorbate 60 cationic niosomes for ocular supply. Pharmaceutics. 2023;15(4):1247.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allam A, Elsabahy M, El Badry M, Eleraky NE. Betaxolol-loaded niosomes built-in inside pH-sensitive in situ forming gel for administration of glaucoma. Int J Pharm. 2021;598:120380.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fathalla D, Fouad EA, Soliman GM. Latanoprost niosomes as a sustained launch ocular supply system for the administration of glaucoma. Drug Dev Ind Pharm. 2020;46(5):806–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coursey TG, Henriksson JT, Marcano DC, et al. Dexamethasone nanowafer as an efficient remedy for dry eye illness. J Management Launch. 2015;213:168–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcano DC, Shin CS, Lee B, et al. Synergistic cysteamine supply nanowafer as an efficacious therapy modality for corneal cystinosis. Mol Pharm. 2016;13(10):3468–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan X, Marcano DC, Shin CS, et al. Ocular drug supply nanowafer with enhanced therapeutic efficacy. ACS Nano. 2015;9(2):1749–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dourado LFN, da Silva CN, Gonçalves RS, et al. Enchancment of PnPP-19 peptide bioavailability for glaucoma remedy: design and software of nanowafers primarily based on PVA. J Drug Deliv Sci Technol. 2022;74:103501.

    Article 
    CAS 

    Google Scholar
     

  • Rykowska I, Nowak I, Nowak R. Delicate contact lenses as drug supply methods: a overview. Molecules. 2021;26(18):5577.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peral A, Martinez-Aguila A, Pastrana C, Huete-Toral F, Carpena-Torres C, Carracedo G. Contact lenses as drug supply system for glaucoma: a overview. Appl Sci. 2020;10(15):5151.

    Article 
    CAS 

    Google Scholar
     

  • Filipe HP, Henriques J, Reis P, Silva PC, Quadrado MJ, Serro AP. Contact lenses as drug managed launch methods: a story overview. Rev Bras Oftalmol. 2016;75:241–7.

    Article 

    Google Scholar
     

  • Choi SW, Kim J. Therapeutic contact lenses with polymeric autos for ocular drug supply: a overview. Supplies (Basel). 2018;11(7):1125.

    Article 
    PubMed 

    Google Scholar
     

  • Hsu KH, Carbia BE, Plummer C, Chauhan A. Twin drug supply from vitamin E loaded contact lenses for glaucoma remedy. Eur J Pharm Biopharm. 2015;94:312–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soeken TA, Ross AE, Kohane DS, et al. Dexamethasone-eluting contact lens for the prevention of postphotorefractive keratectomy scar in a New Zealand white rabbit mannequin. Cornea. 2021;40(9):1175–80.

    Article 
    PubMed 

    Google Scholar
     

  • Maulvi FA, Soni TG, Shah DO. A overview on therapeutic contact lenses for ocular drug supply. Drug Deliv. 2016;23(8):3017–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shayani Rad M, Sabeti Z, Mohajeri SA, Fazly Bazzaz BS. Preparation, characterization, and analysis of zinc oxide nanoparticles suspension as an antimicrobial media for every day use comfortable contact lenses. Curr Eye Res. 2020;45(8):931–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bin Sahadan MY, Tong WY, Tan WN, et al. Phomopsidione nanoparticles coated contact lenses scale back microbial keratitis inflicting pathogens. Exp Eye Res. 2019;178:10–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiao Z, Huo Q, Lin X, et al. Drug-free contact lens primarily based on quaternized chitosan and tannic acid for bacterial keratitis remedy and corneal restore. Carbohydr Polym. 2022;286:119314.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding X, Ben-Shlomo G, Que L. Delicate contact lens with embedded microtubes for sustained and self-adaptive drug supply for glaucoma therapy. ACS Appl Mater Interfaces. 2020;12(41):45789–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper RC, Yang H. Hydrogel-based ocular drug supply methods: rising fabrication methods, functions, and bench-to-bedside manufacturing issues. J Management Launch. 2019;306:29–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irimia T, Dinu-Pîrvu CE, Ghica MV, et al. Chitosan-based in situ gels for ocular supply of therapeutics: a state-of-the-art overview. Mar Medication. 2018;16(10):373.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sacco P, Furlani F, De Marzo G, Marsich E, Paoletti S, Donati I. Ideas for growing bodily gels of chitosan and of chitosan derivatives. Gels. 2018;4(3):67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Ai S, Yang Z, Li X. Peptide-based supramolecular hydrogels for native drug supply. Adv Drug Deliv Rev. 2021;174:482–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arranz-Romera A, Esteban-Pérez S, Garcia-Herranz D, Aragón-Navas A, Bravo-Osuna I, Herrero-Vanrell R. Mixture remedy and co-delivery methods to optimize therapy of posterior section neurodegenerative ailments. Drug Discov At present. 2019;24(8):1644–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin S, Ge C, Wang D, et al. Overcoming the anatomical and physiological boundaries in topical eye floor medicine utilizing a peptide-decorated polymeric micelle. ACS Appl Mater Interfaces. 2019;11(43):39603–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang G, Wang Q, Yang X, Qian Y, Zhang G, Tang B. γ-Cyclodextrin-based polypseudorotaxane hydrogels for ophthalmic supply of flurbiprofen to deal with anterior uveitis. Carbohydr Polym. 2022;277:118889.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung JH, Kim SS, Chung H, Hejri A, Prausnitz MR. Six-month sustained supply of anti-VEGF from in-situ forming hydrogel within the suprachoroidal area. J Management Launch. 2022;352:472–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao H, Chen M, Liu Y, et al. Injectable anti-inflammatory supramolecular nanofiber hydrogel to advertise anti-VEGF remedy in age-related macular degeneration therapy. Adv Mater. 2023;35(2):e2204994.

    Article 
    PubMed 

    Google Scholar
     

  • Lee Okay, Goudie MJ, Tebon P, et al. Non-transdermal microneedles for superior drug supply. Adv Drug Deliv Rev. 2020;165–166:41–59.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu J, Zhou X, Kim HJ, et al. Gelatin methacryloyl microneedle patches for minimally invasive extraction of pores and skin interstitial fluid. Small. 2020;16(16):e1905910.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang J, Moore JS, Edelhauser HF, Prausnitz MR. Intrascleral drug supply to the attention utilizing hole microneedles. Pharm Res. 2009;26(2):395–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta P, Yadav KS. Purposes of microneedles in delivering medicine for varied ocular ailments. Life Sci. 2019;237:116907.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi H, Zhou J, Wang Y, et al. A speedy corneal therapeutic microneedle for environment friendly ocular drug supply. Small. 2022;18(4):e2104657.

    Article 
    PubMed 

    Google Scholar
     

  • Cui M, Zheng M, Wiraja C, et al. Ocular supply of predatory micro organism with cryomicroneedles in opposition to eye an infection. Adv Sci (Weinh). 2021;8(21):e2102327.

    Article 
    PubMed 

    Google Scholar
     

  • Lee Okay, Park S, Jo DH, et al. Self-plugging microneedle (SPM) for intravitreal drug supply. Adv Healthc Mater. 2022;11(12):e2102599.

    Article 
    PubMed 

    Google Scholar
     

  • Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug supply to the retina: present standing and implications for gene remedy. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(12):1477–507.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musarella MA. Gene mapping of ocular ailments. Surv Ophthalmol. 1992;36(4):285–312.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng KJ, Hsieh CM, Nepali Okay, Liou JP. Ocular illness therapeutics: design and supply of medicine for ailments of the attention. J Med Chem. 2020;63(19):10533–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Present scientific functions of in vivo gene remedy with AAVs. Mol Ther. 2021;29(2):464–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunbar CE, Excessive KA, Joung JK, Kohn DB, Ozawa Okay, Sadelain M. Gene remedy comes of age. Science. 2018;359(6372):eaan4672.

    Article 
    PubMed 

    Google Scholar
     

  • Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene remedy within the anterior eye section. Curr Gene Ther. 2022;22(2):104–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren W, Duan S, Dai C, Xie C, Jiang L, Shi Y. Nanotechnology lighting the best way for gene remedy in ophthalmopathy: from alternatives towards functions. Molecules. 2023;28(8):3500.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colella P, Cotugno G, Auricchio A. Ocular gene remedy: present progress and future prospects. Traits Mol Med. 2009;15(1):23–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naso MF, Tomkowicz B, Perry WL third, Strohl WR. Adeno-associated virus (AAV) as a vector for gene remedy. BioDrugs. 2017;31(4):317–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bastola P, Track L, Gilger BC, Hirsch ML. Adeno-associated virus mediated gene remedy for corneal ailments. Pharmaceutics. 2020;12(8):767.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarallo V, Bogdanovich S, Hirano Y, et al. Inhibition of choroidal and corneal pathologic neovascularization by Plgf1-de gene switch. Make investments Ophthalmol Vis Sci. 2012;53(13):7989–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Y, Tai PWL, Ai J, et al. Transcriptome profiling of neovascularized corneas reveals miR-204 as a multi-target biotherapy deliverable by rAAVs. Mol Ther Nucleic Acids. 2018;10:349–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaemmerer WF. How will the sector of gene remedy survive its success? Bioeng Transl Med. 2018;3(2):166–77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang J, Zhang X, Tang Y, Li S, Chen J. Progress on ocular siRNA gene-silencing remedy and drug supply methods. Fundam Clin Pharmacol. 2021;35(1):4–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Del Amo EM, Urtti A. Present and future ophthalmic drug supply methods. A shift to the posterior section. Drug Discov At present. 2008;13(3–4):135–43.

    PubMed 

    Google Scholar
     

  • Ma Y, Lin H, Wang P, et al. A miRNA-based gene remedy nanodrug synergistically enhances pro-inflammatory antitumor immunity in opposition to melanoma. Acta Biomater. 2023;155:538–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribeiro MCS, de Miranda MC, Cunha PDS, et al. Neuroprotective impact of siRNA entrapped in hyaluronic acid-coated lipoplexes by intravitreal administration. Pharmaceutics. 2021;13(6):845.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar S, Fry LE, Wang JH, et al. RNA-targeting methods as a platform for ocular gene remedy. Prog Retin Eye Res. 2023;92:101110.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell SR, Drack AV, Cideciyan AV, et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis sort 10: a part 1b/2 trial. Nat Med. 2022;28(5):1014–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Supe S, Upadhya A, Singh Okay. Position of small interfering RNA (siRNA) in focusing on ocular neovascularization: a overview. Exp Eye Res. 2021;202:108329.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Zhao P, Chen Z, Wang H, Wang Y, Lin Q. Non-viral gene remedy utilizing RNA interference with PDGFR-α mediated epithelial-mesenchymal transformation for proliferative vitreoretinopathy. Mater At present Bio. 2023;20:100632.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhurandhar D, Sahoo NK, Mariappan I, Narayanan R. Gene remedy in retinal ailments: a overview. Indian J Ophthalmol. 2021;69(9):2257–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sander JD, Joung JK. CRISPR-Cas methods for enhancing, regulating and focusing on genomes. Nat Biotechnol. 2014;32:347–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo N, Liu JB, Li W, Ma YS, Fu D. The ability and the promise of CRISPR/Cas9 genome enhancing for scientific software with gene remedy. J Adv Res. 2022;40:135–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gumerson JD, Alsufyani A, Yu W, et al. Restoration of RPGR expression in vivo utilizing CRISPR/Cas9 gene enhancing. Gene Ther. 2022;29(1–2):81–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung SH, Sin TN, Dang B, et al. CRISPR-based VEGF suppression utilizing paired information RNAs for therapy of choroidal neovascularization. Mol Ther Nucleic Acids. 2022;28:613–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banskota S, Raguram A, Suh S, et al. Engineered virus-like particles for environment friendly in vivo supply of therapeutic proteins. Cell. 2022;185(2):250-265.e16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manukonda R, Attem J, Yenuganti VR, Kaliki S, Vemuganti GK. Exosomes within the visible system: new avenues in ocular ailments. Tumour Biol. 2022;44(1):129–52.

    Article 
    PubMed 

    Google Scholar
     

  • Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Sign. 2021;19(1):47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng X, Peng Z, Yuan L, et al. Analysis progress of exosomes in pathogenesis, analysis, and therapy of ocular ailments. Entrance Bioeng Biotechnol. 2023;11:1100310.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49(3):347–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, perform, and biomedical functions of exosomes. Science. 2020;367(6478):eaau6977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong X, Lei Y, Yu Z, et al. Exosome-mediated supply of an anti-angiogenic peptide inhibits pathological retinal angiogenesis. Theranostics. 2021;11(11):5107–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian Y, Zhang F, Qiu Y, et al. Discount of choroidal neovascularization through cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells. Nat Biomed Eng. 2021;5(9):968–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou T, He C, Lai P, et al. miR-204-containing exosomes ameliorate GVHD-associated dry eye illness. Sci Adv. 2022;8(2):eabj9617.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrmann IK, Wooden MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug supply platform. Nat Nanotechnol. 2021;16(7):748–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of extracellular vesicles by fusion with liposomes for the design of customized biogenic drug supply methods. ACS Nano. 2018;12(7):6830–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kojima R, Bojar D, Rizzi G, et al. Designer exosomes produced by implanted cells intracerebrally ship therapeutic cargo for Parkinson’s illness therapy. Nat Commun. 2018;9(1):1305.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siqueira Jørgensen SD, Al Sawaf M, Graeser Okay, Mu H, Müllertz A, Rades T. The power of two in vitro lipolysis fashions reflecting the human and rat gastro-intestinal circumstances to foretell the in vivo efficiency of SNEDDS dosing regimens. Eur J Pharm Biopharm. 2018;124:116–24.

    Article 
    PubMed 

    Google Scholar
     

  • Pouton CW. Lipid formulations for oral administration of medicine: non-emulsifying, self-emulsifying and “self-microemulsifying” drug supply methods. Eur J Pharm Sci. 2000;11(Suppl 2):S93–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ujhelyi Z, Vecsernyés M, Fehér P, et al. Physico-chemical characterization of self-emulsifying drug supply methods. Drug Discov At present Technol. 2018;27:81–6.

    Article 
    PubMed 

    Google Scholar
     

  • Li Z, Xu D, Yuan Y, et al. Advances of spontaneous emulsification and its essential functions in enhanced oil restoration course of. Adv Colloid Interface Sci. 2020;277:102119.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-emulsifying drug-delivery methods: from the event to the present functions and challenges in oral drug supply. Pharmaceutics. 2020;12(12):1194.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, et al. Growth of an osmoprotective microemulsion as a therapeutic platform for ocular floor safety. Int J Pharm. 2022;623:121948.

    Article 
    PubMed 

    Google Scholar
     

  • Kontogiannidou E, Meikopoulos T, Gika H, et al. In vitro analysis of self-nano-emulsifying drug supply methods (SNEDDS) containing room temperature ionic liquids (RTILs) for the oral supply of amphotericin B. Pharmaceutics. 2020;12(8):699.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small. 2005;1(2):172–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang T, Wei C, Wu X, et al. Characterization and analysis of rapamycin-loaded nano-micelle ophthalmic resolution. J Funct Biomater. 2023;14(1):49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barenholz Y. Doxil®–the primary FDA-approved nano-drug: classes realized. J Management Launch. 2012;160(2):117–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene supply to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toropainen E, Fraser-Miller SJ, Novakovic D, et al. Biopharmaceutics of topical ophthalmic suspensions: significance of viscosity and particle dimension in ocular absorption of indomethacin. Pharmaceutics. 2021;13(4):452.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Younes NF, Abdel-Halim SA, Elassasy AI. Corneal focused Sertaconazole nitrate loaded cubosomes: Preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo research. Int J Pharm. 2018;553(1–2):386–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bali V, Ali M, Ali J. Research of surfactant mixtures and improvement of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids Surf B Biointerfaces. 2010;76(2):410–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamilvanan S, Benita S. The potential of lipid emulsion for ocular supply of lipophilic medicine. Eur J Pharm Biopharm. 2004;58(2):357–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Apaolaza PS, Delgado D, del Pozo-Rodríguez A, Gascón AR, Solinís MÁ. A novel gene remedy vector primarily based on hyaluronic acid and strong lipid nanoparticles for ocular ailments. Int J Pharm. 2014;465(1–2):413–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fangueiro JF, Andreani T, Egea MA, et al. Design of cationic lipid nanoparticles for ocular supply: improvement, characterization and cytotoxicity. Int J Pharm. 2014;461(1–2):64–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fahmy AM, Hassan M, El-Setouhy DA, Tayel SA, Al-Mahallawi AM. Voriconazole ternary micellar methods for the therapy of ocular mycosis: statistical optimization and in vivo analysis. J Pharm Sci. 2021;110(5):2130–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balguri SP, Adelli GR, Janga KY, Bhagav P, Majumdar S. Ocular disposition of ciprofloxacin from topical, PEGylated nanostructured lipid carriers: Impact of molecular weight and density of poly (ethylene) glycol. Int J Pharm. 2017;529(1–2):32–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nayak Okay, Misra M. Triamcinolone acetonide-Loaded PEGylated microemulsion for the posterior section of eye. ACS Omega. 2020;5(14):7928–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakhani P, Patil A, Wu KW, et al. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug supply. Int J Pharm. 2019;572:118771.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Craig JP, Simmons PA, Patel S, Tomlinson A. Refractive index and osmolality of human tears. Optom Vis Sci. 1995;72(10):718–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel N, Nakrani H, Raval M, Sheth N. Growth of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained supply and enhanced ocular bioavailability. Drug Deliv. 2016;23(9):3712–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fialho SL, da Silva-Cunha A. New car primarily based on a microemulsion for topical ocular administration of dexamethasone. Clin Exp Ophthalmol. 2004;32(6):626–32.

    Article 
    PubMed 

    Google Scholar
     

  • López-Alemany A, Montés-Micó R, García-Valldecabres M. Ocular physiology and synthetic tears. J Am Optom Assoc. 1999;70(7):455–60.

    PubMed 

    Google Scholar
     

  • Moiseev RV, Steele F, Khutoryanskiy VV. Polyaphron formulations stabilised with completely different water-soluble polymers for ocular drug supply. Pharmaceutics. 2022;14(5):926.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radomska-Soukharev A, Wojciechowska J. Microemulsions as potential ocular drug supply methods: part diagrams and bodily properties relying on components. Acta Pol Pharm. 2005;62(6):465–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Doshi U, Xu J. Impact of viscosity, floor rigidity and mucoadhesion on ocular residence time of lubricant eye drops. Make investments Ophthalmol Vis Sci. 2009;50(13):4641–4641.


    Google Scholar
     

  • Luo Q, Zhao J, Zhang X, Pan W. Nanostructured lipid provider (NLC) coated with Chitosan Oligosaccharides and its potential use in ocular drug supply system. Int J Pharm. 2011;403(1–2):185–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stahl U, Willcox M, Stapleton F. Osmolality and tear movie dynamics. Clin Exp Optom. 2012;95(1):3–11.

    Article 
    PubMed 

    Google Scholar
     

  • Murube J. Tear osmolarity. Ocul Surf. 2006;4(2):62–73.

    Article 
    PubMed 

    Google Scholar
     

  • Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, et al. Drug supply to the posterior section of the attention: biopharmaceutic and pharmacokinetic issues. Pharmaceutics. 2020;12(3):269.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shetty R, Naidu JR, Nair AP, et al. Distinct ocular floor soluble issue profile in human corneal dystrophies. Ocul Surf. 2020;18(2):237–48.

    Article 
    PubMed 

    Google Scholar
     

  • Romeo A, Musumeci T, Carbone C, et al. Ferulic acid-loaded polymeric nanoparticles for potential ocular supply. Pharmaceutics. 2021;13(5):687.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carnevale C, Riva I, Roberti G, et al. Confocal microscopy and anterior section optical coherence tomography imaging of the ocular floor and bleb morphology in medically and surgically handled glaucoma sufferers: a overview. Prescribed drugs (Basel). 2021;14(6):581.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalil IA, Ali IH, El-Sherbiny IM. Noninvasive biodegradable nanoparticles-in-nanofibers single-dose ocular insert: in vitro, ex vivo and in vivo analysis. Nanomedicine (Lond). 2019;14(1):33–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leonardi A, Bucolo C, Romano GL, et al. Affect of various surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int J Pharm. 2014;470(1–2):133–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ammar HO, Haider M, Ibrahim M, El Hoffy NM. In vitro and in vivo investigation for optimization of niosomal skill for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug Deliv. 2017;24(1):414–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tavakoli M, Mahboobian MM, Nouri F, Mohammadi M. Learning the ophthalmic toxicity potential of developed ketoconazole loaded nanoemulsion in situ gel formulation for ophthalmic administration. Toxicol Mech Strategies. 2021;31(8):572–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahboobian MM, Seyfoddin A, Aboofazeli R, Foroutan SM, Rupenthal ID. Brinzolamide-loaded nanoemulsions: ex vivo transcorneal permeation, cell viability and ocular irritation checks. Pharm Dev Technol. 2019;24(5):600–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ames P, Galor A. Cyclosporine ophthalmic emulsions for the therapy of dry eye: a overview of the scientific proof. Clin Investig (Lond). 2015;5(3):267–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boujnah Y, Mouchel R, El-Chehab H, Dot C, Burillon C, Kocaba V. Étude potential, monocentrique, non contrôlée de l’efficacité, de la tolérance et de l’adhésion au traitement par ciclosporine 0,1 % au cours des sécheresses oculaires sévères [Prospective, monocentric, uncontrolled study of efficacy, tolerance and adherence of cyclosporin 0.1 % for severe dry eye syndrome]. J Fr Ophtalmol. 2018;41(2):129–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandal A, Gote V, Pal D, Ogundele A, Mitra AK. Ocular Pharmacokinetics of a topical ophthalmic nanomicellar resolution of cyclosporine (Cequa®) for dry eye illness. Pharm Res. 2019;36(2):36.

    Article 
    PubMed 

    Google Scholar
     

  • Henostroza M, Melo Okay, Yukuyama MN, Löbenberg R, Bou-Chacra NA. Cationic rifampicin nanoemulsion for the therapy of ocular tuberculosis. Colloids Surf, A. 2020;597:124755.

    Article 

    Google Scholar
     

  • Kagkelaris Okay, Panayiotakopoulos G, Georgakopoulos CD. Nanotechnology-based formulations to amplify intraocular bioavailability. Ther Adv Ophthalmol. 2022;14:25158414221112356.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eroglu YI. A comparative overview of Haute Autorité de Santé and Nationwide Institute for Well being and Care Excellence well being know-how assessments of Ikervis® to deal with extreme keratitis in grownup sufferers with dry eye illness which has not improved regardless of therapy with tear substitutes. J Mark Entry Well being Coverage. 2017;5(1):1336043.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyer DS, Yoon YH, Belfort R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in sufferers with diabetic macular edema. Ophthalmology. 2014;121(10):1904–14.

    Article 
    PubMed 

    Google Scholar
     

  • Wentz SM, Value F, Harris A, Siesky B, Ciulla T. Efficacy and security of bromfenac 0.075% formulated in DuraSite for ache and irritation in cataract surgical procedure. Professional Opin Pharmacother. 2019;20(14):1703–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigues GA, Lutz D, Shen J, et al. Topical drug supply to the posterior section of the attention: addressing the problem of preclinical to scientific translation. Pharm Res. 2018;35(12):245.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn SJ, Hong HK, Na YM, et al. Use of rabbit eyes in pharmacokinetic research of intraocular medicine. J Vis Exp. 2016;113:53878.


    Google Scholar
     

  • U.S. Nationwide Library of Drugs, A randomized managed trial evaluating urea loaded nanoparticles to placebo: a brand new idea for cataract administration, NCT03001466, 2016.

  • Kim T, Sall Okay, Holland EJ, Brazzell RK, Coultas S, Gupta PK. Security and efficacy of twice every day administration of KPI-121 1% for ocular irritation and ache following cataract surgical procedure. Clin Ophthalmol. 2018;13:69–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • U.S. Nationwide Library of Drugs, POLAT-001 in comparison with latanoprost ophthalmic resolution in sufferers with ocular hypertension and open-angle glaucoma, NCT02466399, 2020.

  • Wang LR, Wang Y, Wang SLW, Jingjing JC, Xingguo H. Seed crystal nanoparticles tetrandrine ophthalmic formulation and preparation methodology. C.N. Patent CN 1,05,726,484 B, 2016.

  • Jialu WLR, Ruijuan LWL, Ze ZFW. Puerarin and scutellarin lipid nanoparticle ophthalmic preparation and preparation methodology thereof. C.N. Patent CN 1,08,066,315 A, 2016.

  • Li CY, Li YP, Ying WH, Hangping C. Timolol maleate cubic liquid crystal nanoparticle eye drops and preparation methodology thereof. C.N. Patent CN 1,06,619,573 A, 2016.

  • Lee JY, Shin YJ, Sang-Rok R. ophthalmic nanoemulsion composition containing cyclosporine and methodology for making ready identical, PH12015502587B1, 2016.

  • Wang SJ, Cha KH, Kang H, Solar BK. Cyclosporine-containing non-irritative nanoemulsion ophthalmic composition, US 9,320,801 B2, 2016.

  • XU S, Zhu Y, Fan Q, Ou S, Liu X. nanosuspension of tobramycin and dexamethasone and preparation methodology thereof, CN105708844, 2016.

  • Weiss, S.L. Therapy of glaucoma and/or retinal ailments. WO 2017152129A2, 9 August 2017.

  • Yates CR, Smith JS, Miller DD, Toutounchian JJ. Technique for regulating retinal endothelial cell viability, in, US 9,566,255, 2017.

  • Chen H, Enlow EM, Popov A. Pharmaceutical nanoparticles exhibiting improved mucosal transport. A.U. Patent AU 2,013,256,092 B2, 2017.

  • Campora G. Nanoparticle ophthalmic composition for the therapy of ocular problems or ailments. U.S. Patent US 20,190,070,242 A1, 2018.

  • Dongwoo L, Hyunju B, Younggwan Okay. Non-irritant ophthalmic composition containing cyclosporin, and handy preparation methodology, US 15/747,618, 2018.

  • Yates CR, Smith JS, Miller DD, Toutounchian JJ. Technique for regulating retinal endothelial cell viability, in, US 10,010,516, 2018.

  • Lopes FP, Jose E. Compositions of jasmonate compounds and strategies of use. US 20,180,000,958 A1, 2018.

  • Arumugham R, Upadhyay AK. Ophthalmic compositions and strategies of use. U.S. Patent US 20,190,008,920 A1, 2018.

  • Venkatraman S, Natarajan JV, Howden T, Boey F. inventors; Nanyang Technological College, Singapore Well being Providers Pte Ltd, assignee. Steady liposomal formulations for ocular drug supply. United States patent US 9,956,195. 2018 Could 1.

  • Barman SP, Liu M, Barman Okay, Ward KL, Hackett B. inventors; Integral Biosystems LLC, assignee. Strategies and biocompatible compositions to attain sustained drug launch within the eye. United States patent US 9,931,306. 2018 Apr 3.

  • Fu J, Campochiaro PA, Hanes JS. inventors; Johns Hopkins College, assignee. Non-linear multiblock copolymer-drug conjugates for the supply of energetic brokers. United States patent software US 16/182,261. 2019 Mar 7.

  • Davis ME, Davishan ME, Han H. Nanoparticles stabilized by nitrophenylboronic acid composition. JP 2,019,108,372A, 2019.

  • Lee HC. Drug supply implant for treating eye ailments, and preparation methodology due to this fact. WO 2,019,160,306A1, 2019.

  • Liposome Corticosteroid for the Regionally Injecting in Irritation Lesion or Area. CN 109906075A, 18 June 2019.

  • Aquilue JS, Gris MDCL, Gan˜an MID. ´ An oil-in-water nanoemulsion composition of clobetasol, in: WO2018233878A1, 2019.

  • Rasappa Arumugham AU. Ophthalmic compositions and strategies of use, in: WO2020047197A1, 2020.

  • Junyeop L, Jae SY, Sang-rok R. Eye composition containing a cyclosporine and a technique of making ready the identical. KR20200000395A, 2 January 2020.

  • Chul-hwan Okay, Hyun-seop N, Hye-min Okay, Da-hye S. A surfactant-free sort ophthalmic nano-emulsion composition, and the manufacturing methodology thereof. KR 20200053205A, 18 Could 2020.

  • Qing D. Nanocrystalline eye drop, preparation methodology and software thereof. CN 110664757A, 28 Could 2020.

  • Jain S, Kompella UB, Musunuri S. Preservative free ocular compositions and strategies for utilizing the identical for treating dry eye illness and different eye problems, in: US10751337B2, 2020.

  • Leave a Reply