Ma Y, Bao J, Zhang Y, et al. Mammalian near-infrared picture imaginative and prescient by means of injectable and self-powered retinal nanoantennae. Cell. 2019;177(2):243-255.e15.
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to beat ocular boundaries for drug penetration. Professional Opin Drug Metab Toxicol. 2020;16(10):885–906.
Khiev D, Mohamed ZA, Vichare R, et al. Rising nano-formulations and nanomedicines functions for ocular drug supply. Nanomaterials (Basel). 2021;11(1):173.
Kels BD, Grzybowski A, Grant-Kels JM. Human ocular anatomy. Clin Dermatol. 2015;33(2):140–6.
Nayak Okay, Misra M. Triamcinolone acetonide-loaded PEGylated microemulsion for the posterior section of eye. ACS Omega. 2020;5(14):7928–39.
Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug supply. Adv Drug Deliv Rev. 2006;58(11):1131–5.
Tsai CH, Wang PY, Lin IC, Huang H, Liu GS, Tseng CL. Ocular drug supply: position of degradable polymeric nanocarriers for ophthalmic software. Int J Mol Sci. 2018;19(9):2830.
McCluskey P, Powell RJ. The attention in systemic inflammatory ailments. Lancet. 2004;364(9451):2125–33.
Imaginative and prescient impairment and blindness. https://www.who.int/news-room/fact-sheets/element/blindness-and-visual-impairment Accessed 19 July 2022.
Brown L, Leck AK, Gichangi M, Burton MJ, Denning DW. The worldwide incidence and analysis of fungal keratitis. Lancet Infect Dis. 2021;21(3):e49–57.
Wielders LHP, Schouten JSAG, Winkens B, et al. European multicenter trial of the prevention of cystoid macular edema after cataract surgical procedure in nondiabetics: ESCRS PREMED research report 1. J Cataract Refract Surg. 2018;44(4):429–39.
Kang JM, Tanna AP. Glaucoma. Med Clin North Am. 2021;105(3):493–510.
Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.
Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and therapy of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86.
Cabrera FJ, Wang DC, Reddy Okay, Acharya G, Shin CS. Challenges and alternatives for drug supply to the posterior of the attention. Drug Discov At present. 2019;24(8):1679–84.
Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug supply methods formulated as eye drops. J Management Launch. 2020;321:1–22.
Ahmed S, Amin MM, Sayed S. Ocular drug supply: a complete overview. AAPS PharmSciTech. 2023;24(2):66.
Al-Kinani AA, Zidan G, Elsaid N, Seyfoddin A, Alani AWG, Alany RG. Ophthalmic gels: previous, current and future. Adv Drug Deliv Rev. 2018;126:113–26.
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical supply. Int J Pharm. 2021;606:120873.
Gholizadeh S, Wang Z, Chen X, Dana R, Annabi N. Superior nanodelivery platforms for topical ophthalmic drug supply. Drug Discov At present. 2021;26(6):1437–49.
Akhter MH, Ahmad I, Alshahrani MY, et al. Drug supply challenges and present progress in nanocarrier-based ocular therapeutic system. Gels. 2022;8(2):82.
Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug supply: present standing and translational alternative. RSC Adv. 2020;10(46):27835–55.
Onugwu AL, Nwagwu CS, Onugwu OS, et al. Nanotechnology primarily based drug supply methods for the therapy of anterior section eye ailments. J Management Launch. 2023;354:465–88.
Kang-Mieler JJ, Rudeen KM, Liu W, Mieler WF. Advances in ocular drug supply methods. Eye (Lond). 2020;34(8):1371–9.
Vaneev A, Tikhomirova V, Chesnokova N, et al. Nanotechnology for topical drug supply to the anterior section of the attention. Int J Mol Sci. 2021;22(22):12368.
Gupta A, Kafetzis KN, Tagalakis AD, Yu-Wai-Man C. RNA therapeutics in ophthalmology—translation to scientific trials. Exp Eye Res. 2021;205:108482.
Adrianto MF, Annuryanti F, Wilson CG, Sheshala R, Thakur RRS. In vitro dissolution testing fashions of ocular implants for posterior section drug supply. Drug Deliv Transl Res. 2022;12(6):1355–75.
Kumaran Okay, Karthika Okay, Padmapreetha J. Comparative overview on standard and superior ocular drug supply formulations. Int J Pharm Pharm Sci. 2010;2(4):1–5.
Patel A, Cholkar Okay, Agrahari V, Mitra AK. Ocular drug supply methods: an outline. World J Pharmacol. 2013;2(2):47–64.
Bravo-Osuna I, Andrés-Guerrero V, Arranz-Romera A, Esteban-Pérez S, Molina-Martínez IT, Herrero-Vanrell R. Microspheres as intraocular therapeutic instruments in power ailments of the optic nerve and retina. Adv Drug Deliv Rev. 2018;126:127–44.
Huang H, Yang XR, Li HL, Lu HS, Oswald J, Liu YM, et al. iRGD adorned liposomes: a novel actively penetrating topical ocular drug supply technique. Nano Res. 2020;13(11):3105–9.
Morrison PW, Khutoryanskiy VV. Advances in ophthalmic drug supply. Ther Deliv. 2014;5(12):1297–315.
Pflugfelder SC, Stern ME. Organic capabilities of tear movie. Exp Eye Res. 2020;197:108115.
Imperiale JC, Acosta GB, Sosnik A. Polymer-based carriers for ophthalmic drug supply. J Management Launch. 2018;285:106–41.
Wels M, Roels D, Raemdonck Okay, De Smedt SC, Sauvage F. Challenges and techniques for the supply of biologics to the cornea. J Management Launch. 2021;333:560–78.
Durairaj C. Ocular pharmacokinetics. Handb Exp Pharmacol. 2017;242:31–55.
Bachu RD, Chowdhury P, Al-Saedi ZHF, Karla PK, Boddu SHS. Ocular drug supply barriers-role of nanocarriers within the therapy of anterior section ocular ailments. Pharmaceutics. 2018;10(1):28.
Agrahari V, Mandal A, Agrahari V, et al. A complete perception on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54.
Kim YC, Chiang B, Wu X, Prausnitz MR. Ocular supply of macromolecules. J Management Launch. 2014;190:172–81.
Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the cornea: construction, perform, and improvement. Prog Mol Biol Transl Sci. 2015;134:7–23.
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug supply. AAPS J. 2010;12(3):348–60.
Janagam DR, Wu L, Lowe TL. Nanoparticles for drug supply to the anterior section of the attention. Adv Drug Deliv Rev. 2017;122:31–64.
Zhang T, Xiang CD, Gale D, Carreiro S, Wu EY, Zhang EY. Drug transporter and cytochrome P450 mRNA expression in human ocular boundaries: implications for ocular drug disposition. Drug Metab Dispos. 2008;36(7):1300–7.
Kölln C, Reichl S. mRNA expression of metabolic enzymes in human cornea, corneal cell traces, and hemicornea constructs. J Ocul Pharmacol Ther. 2012;28(3):271–7.
Karla PK, Earla R, Boddu SH, Johnston TP, Pal D, Mitra A. Molecular expression and practical proof of a drug efflux pump (BCRP) in human corneal epithelial cells. Curr Eye Res. 2009;34(1):1–9.
Ahmed S, Amin MM, El-Korany SM, Sayed S. Corneal focused fenticonazole nitrate-loaded novasomes for the administration of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments. Drug Deliv. 2022;29(1):2428–41.
Loftsson T, Stefánsson E. Cyclodextrins and topical drug supply to the anterior and posterior segments of the attention. Int J Pharm. 2017;531(2):413–23.
Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug supply boundaries by means of using bodily forces. Adv Drug Deliv Rev. 2018;126:96–112.
Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug supply: impacts of membranes and boundaries. Professional Opin Drug Deliv. 2008;5(5):567–81.
Bock F, Maruyama Okay, Regenfuss B, et al. Novel anti(lymph)angiogenic therapy methods for corneal and ocular floor ailments. Prog Retin Eye Res. 2013;34:89–124.
Shivhare R, Pathak A, Shrivastava N, Singh C, Tiwari G, Goyal R. An replace overview on novel advancedocular drug supply system. World J Pharm Pharm Sci. 2012;1:545–68.
Watsky MA, Jablonski MM, Edelhauser HF. Comparability of conjunctival and corneal floor areas in rabbit and human. Curr Eye Res. 1988;7(5):483–6.
Ramsay E, Ruponen M, Picardat T, et al. Affect of chemical construction on conjunctival drug permeability: adopting porcine conjunctiva and cassette dosing for development of in silico mannequin. J Pharm Sci. 2017;106(9):2463–71.
Ahmed I, Gokhale RD, Shah MV, Patton TF. Physicochemical determinants of drug diffusion throughout the conjunctiva, sclera, and cornea. J Pharm Sci. 1987;76(8):583–6.
Gote V, Sikder S, Sicotte J, Pal D. Ocular drug supply: current improvements and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–24.
Rada JA, Shelton S, Norton TT. The sclera and myopia. Exp Eye Res. 2006;82(2):185–200.
Solar S, Li J, Li X, et al. Episcleral drug movie for better-targeted ocular drug supply and managed launch utilizing multilayered poly-ε-caprolactone (PCL). Acta Biomater. 2016;37:143–54.
Mofidfar M, Abdi B, Ahadian S, et al. Drug supply to the anterior section of the attention: a overview of present and future therapy methods. Int J Pharm. 2021;607:120924.
Coca-Prados M. The blood-aqueous barrier in well being and illness. J Glaucoma. 2014;23(8 Suppl 1):S36–8.
Dubald M, Bourgeois S, Andrieu V, Fessi H. Ophthalmic drug supply methods for antibiotherapy-a overview. Pharmaceutics. 2018;10(1):10.
Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: idea in formulations and characterization strategies for ocular drug supply. J Management Launch. 2020;328:895–916.
Tisi A, Feligioni M, Passacantando M, Ciancaglini M, Maccarone R. The influence of oxidative stress on blood-retinal barrier physiology in age-related macular degeneration. Cells. 2021;10(1):64.
Díaz-Coránguez M, Ramos C, Antonetti DA. The interior blood-retinal barrier: mobile foundation and improvement. Imaginative and prescient Res. 2017;139:123–37.
Duvvuri S, Majumdar S, Mitra AK. Drug supply to the retina: challenges and alternatives. Professional Opin Biol Ther. 2003;3(1):45–56.
Bochot A, Couvreur P, Fattal E. Intravitreal administration of antisense oligonucleotides: potential of liposomal supply. Prog Retin Eye Res. 2000;19(2):131–47.
Ge Y, Zhang A, Solar R, et al. Penetratin-modified lutein nanoemulsion in-situ gel for the therapy of age-related macular degeneration. Professional Opin Drug Deliv. 2020;17(4):603–19.
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and therapy of glaucoma: a overview. JAMA. 2014;311(18):1901–11.
Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. World prevalence of glaucoma and projections of glaucoma burden by means of 2040: a scientific overview and meta-analysis. Ophthalmology. 2014;121(11):2081–90.
Gagnon MM, Boisjoly HM, Brunette I, Charest M, Amyot M. Corneal endothelial cell density in glaucoma. Cornea. 1997;16(3):314–8.
Li X, Zhang Z, Ye L, et al. Acute ocular hypertension disrupts barrier integrity and pump perform in rat corneal endothelial cells. Sci Rep. 2017;7(1):6951.
Renner M, Stute G, Alzureiqi M, et al. Optic nerve degeneration after retinal ischemia/reperfusion in a rodent mannequin. Entrance Cell Neurosci. 2017;11:254.
Cardigos J, Ferreira Q, Crisóstomo S, et al. Nanotechnology-ocular gadgets for glaucoma therapy: a literature overview. Curr Eye Res. 2019;44(2):111–7.
Subrizi A, Del Amo EM, Korzhikov-Vlakh V, Tennikova T, Ruponen M, Urtti A. Design rules of ocular drug supply methods: significance of drug payload, launch charge, and materials properties. Drug Discov At present. 2019;24(8):1446–57.
Quigley HA. twenty first century glaucoma care. Eye (Lond). 2019;33(2):254–60.
Wong WL, Su X, Li X, et al. World prevalence of age-related macular degeneration and illness burden projection for 2020 and 2040: a scientific overview and meta-analysis. Lancet Glob Well being. 2014;2(2):e106–16.
Thomas CJ, Mirza RG, Gill MK. Age-related macular degeneration. Med Clin North Am. 2021;105(3):473–91.
Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59.
Bakri SJ, Thorne JE, Ho AC, et al. Security and efficacy of anti-vascular endothelial progress issue therapies for neovascular age-related macular degeneration: a report by the American academy of ophthalmology. Ophthalmology. 2019;126(1):55–63.
Ogurtsova Okay, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: world estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–36.
Tan TE, Wong TY. Diabetic retinopathy: Wanting ahead to 2030. Entrance Endocrinol (Lausanne). 2023;13:1077669.
Ajlan RS, Silva PS, Solar JK. Vascular endothelial progress issue and diabetic retinal illness. Semin Ophthalmol. 2016;31(1–2):40–8.
Madjedi Okay, Pereira A, Ballios BG, et al. Switching between anti-VEGF brokers within the administration of refractory diabetic macular edema: a scientific overview. Surv Ophthalmol. 2022;67(5):1364–72.
Liu Y, Wu N. Progress of nanotechnology in diabetic retinopathy therapy. Int J Nanomedicine. 2021;16:1391–403.
Pflugfelder SC, de Paiva CS. The pathophysiology of dry eye illness: what we all know and future instructions for analysis. Ophthalmology. 2017;124(11S):S4–13.
Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15(3):276–83.
Roda M, Corazza I, Bacchi Reggiani ML, et al. dry eye illness and tear cytokine levels-a meta-analysis. Int J Mol Sci. 2020;21(9):3111.
Asiedu Okay, Dzasimatu SK, Kyei S. Affect of dry eye on psychosomatic signs and high quality of life in a wholesome youthful scientific pattern. Eye Contact Lens. 2018;44(Suppl 2):S404–9.
Na KS, Han Okay, Park YG, Na C, Joo CK. Despair, stress, high quality of life, and dry eye illness in Korean ladies: a population-based research. Cornea. 2015;34(7):733–8.
Perez VL, Stern ME, Pflugfelder SC. Inflammatory foundation for dry eye illness flares. Exp Eye Res. 2020;201:108294.
Jones L, Downie LE, Korb D, et al. TFOS DEWS II administration and remedy report. Ocul Surf. 2017;15(3):575–628.
Wang L, Zhou MB, Zhang H. The rising position of topical ocular medicine to focus on the posterior eye. Ophthalmol Ther. 2021;10(3):465–94.
Yang Y, Lockwood A. Topical ocular drug supply methods: Improvements for an unmet want. Exp Eye Res. 2022;218:109006.
Shen J, Lu GW, Hughes P. Focused ocular drug supply with pharmacokinetic/pharmacodynamic issues. Pharm Res. 2018;35(11):217.
Maulvi FA, Shetty KH, Desai DT, Shah DO, Willcox MDP. Current advances in ophthalmic preparations: ocular boundaries, dosage kinds and routes of administration. Int J Pharm. 2021;608:121105.
Gause S, Hsu KH, Shafor C, Dixon P, Powell KC, Chauhan A. Mechanistic modeling of ophthalmic drug supply to the anterior chamber by eye drops and call lenses. Adv Colloid Interface Sci. 2016;233:139–54.
Grassiri B, Zambito Y, Bernkop-Schnürch A. Methods to extend the residence time of drug supply methods on ocular floor. Adv Colloid Interface Sci. 2021;288:102342.
O’Brien Laramy MN, Nagapudi Okay. Lengthy-acting ocular drug supply applied sciences with scientific precedent. Professional Opin Drug Deliv. 2022;19(10):1285–301.
Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug supply. Professional Opin Drug Deliv. 2004;1(1):99–114.
Le NT, Kroeger ZA, Lin WV, Khanani AM, Weng CY. Novel therapies for diabetic macular edema and proliferative diabetic retinopathy. Curr Diab Rep. 2021;21(10):43.
Barocas VH, Balachandran RK. Sustained transscleral drug supply. Professional Opin Drug Deliv. 2008;5(1):1–10.
Chiang B, Jung JH, Prausnitz MR. The suprachoroidal area as a route of administration to the posterior section of the attention. Adv Drug Deliv Rev. 2018;126:58–66.
Nayak Okay, Misra M. A overview on latest drug supply methods for posterior section of eye. Biomed Pharmacother. 2018;107:1564–82.
Liebmann JM, Barton Okay, Weinreb RN, et al. Evolving tips for intracameral injection. J Glaucoma. 2020;29(Suppl 1):S1–7.
Gaballa SA, Kompella UB, Elgarhy O, et al. Corticosteroids in ophthalmology: drug supply improvements, pharmacology, scientific functions, and future views. Drug Deliv Transl Res. 2021;11(3):866–93.
Lane SS, Osher RH, Masket S, Belani S. Analysis of the security of prophylactic intracameral moxifloxacin in cataract surgical procedure. J Cataract Refract Surg. 2008;34(9):1451–9.
Braga-Mele R, Chang DF, Henderson BA, et al. Intracameral antibiotics: security, efficacy, and preparation. J Cataract Refract Surg. 2014;40(12):2134–42.
Labetoulle M, Findl O, Malecaze F, et al. Analysis of the efficacy and security of a standardised intracameral mixture of mydriatics and anaesthetics for cataract surgical procedure. Br J Ophthalmol. 2016;100(7):976–85.
Behndig A, Cochener B, Güell JL, et al. Endophthalmitis prophylaxis in cataract surgical procedure: overview of present observe patterns in 9 European international locations. J Cataract Refract Surg. 2013;39(9):1421–31.
Grzybowski A, Brona P, Zeman L, Stewart MW. Generally used intracameral antibiotics for endophthalmitis prophylaxis: a literature overview. Surv Ophthalmol. 2021;66(1):98–108.
Keating GM. Intracameral cefuroxime. Medication. 2013;73(2):179–86.
Ho JW, Afshari NA. Advances in cataract surgical procedure: preserving the corneal endothelium. Curr Opin Ophthalmol. 2015;26(1):22–7.
Vazirani J, Basu S. Position of topical, subconjunctival, intracameral, and irrigative antibiotics in cataract surgical procedure. Curr Opin Ophthalmol. 2013;24(1):60–5.
Del Amo EM, Rimpelä AK, Heikkinen E, et al. Pharmacokinetic facets of retinal drug supply. Prog Retin Eye Res. 2017;57:134–85.
Jonas JB, Spandau UH, Schlichtenbrede F. Brief-term issues of intravitreal injections of triamcinolone and bevacizumab. Eye (Lond). 2008;22(4):590–1.
Ilochonwu BC, Urtti A, Hennink WE, Vermonden T. Intravitreal hydrogels for sustained launch of therapeutic proteins. J Management Launch. 2020;326:419–41.
Tang Z, Fan X, Chen Y, Gu P. Ocular Nanomedicine. Adv Sci (Weinh). 2022;9(15):e2003699.
Gross A, Cestari DM. Optic neuropathy following retrobulbar injection: a overview. Semin Ophthalmol. 2014;29(5–6):434–9.
Alhassan MB, Kyari F, Ejere HO. 2015 Peribulbar versus retrobulbar anaesthesia for cataract surgical procedure. Cochrane Database Syst Rev. 2015;7:CD004083.
Hayashi Okay, Hayashi H. Intravitreal versus retrobulbar injections of triamcinolone for macular edema related to department retinal vein occlusion. Am J Ophthalmol. 2005;139(6):972–82.
Safi M, Ang MJ, Patel P, Silkiss RZ. Rhino-orbital-cerebral mucormycosis (ROCM) and related cerebritis handled with adjuvant retrobulbar amphotericin B. Am J Ophthalmol Case Rep. 2020;19:100771.
Cosgrove R, Rossow T, Cosgrove M, Siegel M. Suspected systemic uptake of chlorpromazine after retrobulbar injection. Am J Ophthalmol Case Rep. 2020;19:100801.
Urtti A, Salminen L. Minimizing systemic absorption of topically administered ophthalmic medicine. Surv Ophthalmol. 1993;37(6):435–56.
Duncan TE. Unintended effects of topical ocular timolol. Am J Ophthalmol. 1983;95(4):562–3.
Anderson JA. Systemic absorption of topical ocularly utilized epinephrine and dipivefrin. Arch Ophthalmol. 1980;98(2):350–3.
Inoue Okay. Managing opposed results of glaucoma medicines. Clin Ophthalmol. 2014;8:903–13.
Janoria KG, Gunda S, Boddu SH, Mitra AK. Novel approaches to retinal drug supply. Professional Opin Drug Deliv. 2007;4(4):371–88.
Han H, Li S, Xu M, et al. Polymer- and lipid-based nanocarriers for ocular drug supply: present standing and future views. Adv Drug Deliv Rev. 2023;196:114770.
Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine-based options for ocular ailments. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(4):e1548.
Grimaudo MA, Pescina S, Padula C, et al. Topical software of polymeric nanomicelles in ophthalmology: a overview on analysis efforts for the noninvasive supply of ocular therapeutics. Professional Opin Drug Deliv. 2019;16(4):397–413.
Vaishya RD, Khurana V, Patel S, Mitra AK. Managed ocular drug supply with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(5):422–37.
Hu Q, Rijcken CJ, van Gaal E, et al. Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical functions. J Management Launch. 2016;244(Pt B):314–25.
Bourzac Okay. Nanotechnology: carrying medicine. Nature. 2012;491(7425):S58–60.
Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug supply: methods and underlying rules. Nanomedicine (Lond). 2010;5(3):485–505.
Torchilin VP. Construction and design of polymeric surfactant-based drug supply methods. J Management Launch. 2001;73(2–3):137–72.
Rangel-Yagui CO, Pessoa A Jr, Tavares LC. Micellar solubilization of medicine. J Pharm Pharm Sci. 2005;8(2):147–65.
Wang Y, Jiang L, Shen Q, Shen J, Han Y, Zhang H. Investigation on the self-assembled behaviors of C18 unsaturated fatty acids in arginine aqueous resolution. RSC Adv. 2017;7(66):41561–72.
Fameau AL, Arnould A, Lehmann M, von Klitzing R. Photoresponsive self-assemblies primarily based on fatty acids. Chem Commun. 2015;51(14):2907–10.
Ghezzi M, Pescina S, Delledonne A, et al. Enchancment of imiquimod solubilization and pores and skin retention through TPGS micelles: exploiting the co-solubilizing impact of oleic acid. Pharmaceutics. 2021;13(9):1476.
Tampucci S, Guazzelli L, Burgalassi S, et al. pH-responsive nanostructures primarily based on floor energetic fatty acid-protic ionic liquids for imiquimod supply in pores and skin most cancers topical remedy. Pharmaceutics. 2020;12(11):1078.
Ghezzi M, Ferraboschi I, Delledonne A, et al. Cyclosporine-loaded micelles for ocular supply: investigating the penetration mechanisms. J Management Launch. 2022;349:744–55.
Xu X, Solar L, Zhou L, Cheng Y, Cao F. Useful chitosan oligosaccharide nanomicelles for topical ocular drug supply of dexamethasone. Carbohydr Polym. 2020;227:115356.
Zhao X, Seah I, Xue Okay, et al. Antiangiogenic nanomicelles for the topical supply of aflibercept to deal with retinal neovascular illness. Adv Mater. 2022;34(25):e2108360.
Peng C, Kuang L, Zhao J, Ross AE, Wang Z, Ciolino JB. Bibliometric and visualized evaluation of ocular drug supply from 2001 to 2020. J Management Launch. 2022;345:625–45.
Xu J, Zheng S, Hu X, et al. Advances within the analysis of bioinks primarily based on pure collagen, polysaccharide and their derivatives for pores and skin 3D bioprinting. Polymers (Basel). 2020;12(6):1237.
Akhter S, Anwar M, Siddiqui MA, et al. Enhancing the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: formulation improvement, in-vitro and in-vivo research. Colloids Surf B Biointerfaces. 2016;148:19–29.
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their focused supply functions. Molecules. 2020;25(9):2193.
Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological boundaries of the attention—Half I—Obstacles and figuring out components in ocular supply. Eur J Pharm Biopharm. 2017;110:70–5.
Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug supply. Drug Discov At present. 2019;24(8):1524–38.
Jiang C, Cano-Vega MA, Yue F, et al. Dibenzazepine-loaded nanoparticles induce native browning of white adipose tissue to counteract weight problems. Mol Ther. 2022;30(1):502.
Jiang C, Kuang L, Merkel MP, et al. Biodegradable polymeric microsphere-based drug supply for inductive browning of fats. Entrance Endocrinol (Lausanne). 2015;6:169.
Pandit J, Sultana Y, Aqil M. Chitosan coated nanoparticles for environment friendly supply of bevacizumab within the posterior ocular tissues through subconjunctival administration. Carbohydr Polym. 2021;267:118217.
Kim SN, Min CH, Kim YK, et al. Iontophoretic ocular supply of latanoprost-loaded nanoparticles through skin-attached electrodes. Acta Biomater. 2022;144:32–41.
Nguyen DD, Luo LJ, Lai JY. Results of shell thickness of hole poly(lactic acid) nanoparticles on sustained drug supply for pharmacological therapy of glaucoma. Acta Biomater. 2020;111:302–15.
Schnichels S, Hurst J, de Vries JW, et al. Improved therapy choices for glaucoma with brimonidine-loaded lipid DNA nanoparticles. ACS Appl Mater Interfaces. 2021;13(8):9445–56.
Chen Liangbo, Feng Wu, Pang Yan, Yan Dan, Zhang Siyi, Chen Fangjie, Nianxuan Wu, Gong Danni, Liu Jinyao, Yao Fu, Fan Xianqun. Therapeutic nanocoating of ocular floor. Nano At present. 2021;41:101309.
Li M, Xu Z, Zhang L, et al. Focused noninvasive therapy of choroidal neovascularization by hybrid cell-membrane-cloaked biomimetic nanoparticles. ACS Nano. 2021;15(6):9808–19.
Peltonen L, Hirvonen J. Drug nanocrystals—versatile choice for formulation of poorly soluble supplies. Int J Pharm. 2018;537(1–2):73–83.
Al-Kassas R, Bansal M, Shaw J. Nanosizing strategies for enhancing bioavailability of medicine. J Management Launch. 2017;260:202–12.
Zhang J, Jiao J, Niu M, et al. Ten years of data of nano-carrier primarily based drug supply methods in ophthalmology: present proof, challenges, and future potential. Int J Nanomed. 2021;16:6497–530.
Tai L, Liu C, Jiang Okay, et al. A novel penetratin-modified complicated for noninvasive intraocular supply of antisense oligonucleotides. Int J Pharm. 2017;529(1–2):347–56.
Josyula A, Omiadze R, Parikh Okay, et al. An ion-paired moxifloxacin nanosuspension eye drop gives improved prevention and therapy of ocular an infection. Bioeng Transl Med. 2021;6(3):e10238.
García-Millán E, Quintáns-Carballo M, Otero-Espinar FJ. Improved launch of triamcinolone acetonide from medicated comfortable contact lenses loaded with drug nanosuspensions. Int J Pharm. 2017;525(1):226–36.
Yan R, Xu L, Wang Q, Wu Z, Zhang H, Gan L. Cyclosporine A nanosuspensions for ophthalmic supply: a comparative research between cationic nanoparticles and drug-core mucus penetrating nanoparticles. Mol Pharm. 2021;18(12):4290–8.
Wu Y, Vora LK, Mishra D, et al. Nanosuspension-loaded dissolving bilayer microneedles for hydrophobic drug supply to the posterior section of the attention. Biomater Adv. 2022;137:212767.
Jacob S, Nair AB, Shah J. Rising position of nanosuspensions in drug supply methods. Biomater Res. 2020;24:3.
Rimple, Newton MJ. Affect of ocular appropriate lipoids and castor oil in fabrication of brimonidine tartrate nanoemulsions by 33 full factorial design. Current Pat Inflamm Allergy Drug Discov. 2018;12(2):169–83.
Qamar Z, Qizilbash FF, Iqubal MK, et al. Nano-based drug supply system: latest methods for the therapy of ocular illness and future perspective. Current Pat Drug Deliv Formul. 2019;13(4):246–54.
Singh Y, Meher JG, Raval Okay, et al. Nanoemulsion: ideas, improvement and functions in drug supply. J Management Launch. 2017;252:28–49.
Lallemand F, Daull P, Benita S, Buggage R, Garrigue JS. Efficiently enhancing ocular drug supply utilizing the cationic nanoemulsion, novasorb. J Drug Deliv. 2012;2012:604204.
Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and functions. Delicate Matter. 2016;12(11):2826–41.
Daull P, Lallemand F, Garrigue JS. Advantages of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug supply. J Pharm Pharmacol. 2014;66(4):531–41.
Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Nanoemulsion as a possible ophthalmic supply system for dorzolamide hydrochloride. AAPS PharmSciTech. 2009;10(3):808–19.
Jurišić Dukovski B, Juretić M, Bračko D, et al. Useful ibuprofen-loaded cationic nanoemulsion: improvement and optimization for dry eye illness therapy. Int J Pharm. 2020;576:118979.
Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics within the aqueous humor of rabbits. Int J Pharm. 2013;443(1–2):293–305.
Mahboobian MM, Mohammadi M, Mansouri Z. Growth of thermosensitive in situ gel nanoemulsions for ocular supply of acyclovir. J Drug Deliv Sci Technol. 2020;55:101400.
Bhalerao H, Koteshwara KB, Chandran S. Design, optimisation and analysis of in situ gelling nanoemulsion formulations of brinzolamide. Drug Deliv Transl Res. 2020;10(2):529–47.
Youssef AAA, Cai C, Dudhipala N, Majumdar S. Design of topical ocular ciprofloxacin nanoemulsion for the administration of bacterial keratitis. Prescribed drugs (Basel). 2021;14(3):210.
Ismail A, Nasr M, Sammour O. Nanoemulsion as a possible and biocompatible provider for ocular supply of travoprost: improved pharmacokinetic/pharmacodynamic properties. Int J Pharm. 2020;583:119402.
Üstündag-Okur N, Gökçe EH, Eğrilmez S, Özer Ö, Ertan G. Novel ofloxacin-loaded microemulsion formulations for ocular supply. J Ocul Pharmacol Ther. 2014;30(4):319–32.
Kale SN, Deore SL. Emulsion micro emulsion and nano emulsion: a overview. Syst Rev Pharm. 2016;8:39–47.
Cunha Júnior AdS, Fialho SL, Carneiro LB, Oréfice F. Microemulsions as drug supply methods for topical ocular administration. Arquivos Brasileiros de Oftalmologia. 2003;66:385–91.
Üstündağ Okur N, Er S, Çağlar E, Ekmen T, Sala F. Formulation of microemulsions for dermal supply of Cephalexin. Acta Pharm Sci. 2017;55(4):27.
Mahran A, Ismail S, Allam AA. Growth of triamcinolone acetonide-loaded microemulsion as a potential ophthalmic supply system for therapy of uveitis: in vitro and in vivo analysis. Pharmaceutics. 2021;13(4):444.
Santonocito M, Zappulla C, Viola S, et al. Evaluation of a brand new nanostructured microemulsion system for ocular supply of sorafenib to posterior section of the attention. Int J Mol Sci. 2021;22(9):4404.
Rupenthal ID, Agarwal P, Uy B, et al. Preparation and characterisation of a cyclodextrin-complexed mānuka honey microemulsion for eyelid software. Pharmaceutics. 2022;14(7):1493.
Deepak Amar, Goyal AK, Rath G. Nanofiber in transmucosal drug supply. J Drug Deliv Sci Technol. 2018;43(2017):379–87.
Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Current developments of nanostructures for the ocular supply of pure compounds. Entrance Chem. 2022;10:850757.
Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug supply functions. J Management Launch. 2014;185:12–21.
Zupančič Š, Sinha-Ray S, Sinha-Ray S, Kristl J, Yarin AL. Lengthy-term sustained ciprofloxacin launch from pmma and hydrophilic polymer blended nanofibers. Mol Pharm. 2016;13(1):295–305.
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug supply. J Management Launch. 2016;240:77–92.
Da Silva GR, Lima TH, Fernandes-Cunha GM, et al. Ocular biocompatibility of dexamethasone acetate loaded poly(ɛ-caprolactone) nanofibers. Eur J Pharm Biopharm. 2019;142:20–30.
Carracedo-Rodríguez G, Martínez-Águila A, Rodriguez-Pomar C, Bodas-Romero J, Sanchez-Naves J, Pintor J. Impact of dietary complement primarily based on melatonin on the intraocular stress in normotensive topics. Int Ophthalmol. 2020;40(2):419–22.
Ferreira de Melo IM, Martins Ferreira CG, da Silva Lima, Souza EH, et al. Melatonin regulates the expression of inflammatory cytokines, VEGF and apoptosis in diabetic retinopathy in rats. Chem Biol Work together. 2020;327:109183.
Harpsøe NG, Andersen LP, Gögenur I, Rosenberg J. Scientific pharmacokinetics of melatonin: a scientific overview. Eur J Clin Pharmacol. 2015;71(8):901–9.
Andersen LP, Werner MU, Rosenkilde MM, et al. Pharmacokinetics of oral and intravenous melatonin in wholesome volunteers. BMC Pharmacol Toxicol. 2016;17:8.
Romeo A, Kazsoki A, Omer S, et al. Formulation and characterization of electrospun nanofibers for melatonin ocular supply. Pharmaceutics. 2023;15(4):1296.
Rohde F, Walther M, Wächter J, Knetzger N, Lotz C, Windbergs M. In-situ tear fluid dissolving nanofibers allow extended viscosity-enhanced twin drug supply to the attention. Int J Pharm. 2022;616:121513.
Tawfik EA, Alshamsan A, Abul Kalam M, et al. In vitro and in vivo organic evaluation of twin drug-loaded coaxial nanofibers for the therapy of corneal abrasion. Int J Pharm. 2021;604:120732.
Esentürk I, Erdal MS, Güngör S. Electrospinning methodology to provide drug-loaded nanofibers for topical/transdermal drug supply functions. J Fac Pharm Istanb Univ. 2016;46:49–64.
Farokhi M, Mottaghitalab F, Reis RL, Ramakrishna S, Kundu SC. Functionalized silk fibroin nanofibers as drug carriers: benefits and challenges. J Management Launch. 2020;321:324–47.
Sridhar R, Lakshminarayanan R, Madhaiyan Okay, Amutha Barathi V, Lim KH, Ramakrishna S. Electrosprayed nanoparticles and electrospun nanofibers primarily based on pure supplies: functions in tissue regeneration, drug supply and prescription drugs. Chem Soc Rev. 2015;44(3):790–814.
Yaylaci S, Dinç E, Aydın B, Tekinay AB, Guler MO. Peptide nanofiber system for sustained supply of anti-vegf proteins to the attention vitreous. Pharmaceutics. 2023;15(4):1264.
Shi X, Zhou T, Huang S, et al. An electrospun scaffold functionalized with a ROS-scavenging hydrogel stimulates ocular wound therapeutic. Acta Biomater. 2023;158:266–80.
Wei S, Yin R, Tang T, et al. Fuel-permeable, irritation-free, clear hydrogel contact lens gadgets with metal-coated nanofiber mesh for eye interfacing. ACS Nano. 2019;13(7):7920–9.
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, functions, and properties. Nanoscale Res Lett. 2014;9(1):247.
Kambhampati SP, Kannan RM. Dendrimer nanoparticles for ocular drug supply. J Ocul Pharmacol Ther. 2013;29(2):151–65.
Spataro G, Malecaze F, Turrin CO, et al. Designing dendrimers for ocular drug supply. Eur J Med Chem. 2010;45(1):326–34.
Shaikh A, Kesharwani P, Gajbhiye V. Dendrimer as a momentous software in tissue engineering and regenerative drugs. J Management Launch. 2022;346:328–54.
Romanowski EG, Yates KA, Paull JRA, Heery GP, Shanks RMQ. Topical astodrimer sodium, a non-toxic polyanionic dendrimer, demonstrates antiviral exercise in an experimental ocular adenovirus an infection mannequin. Molecules. 2021;26(11):3419.
Kambhampati SP, Bhutto IA, Wu T, et al. Systemic dendrimer nanotherapies for focused suppression of choroidal irritation and neovascularization in age-related macular degeneration. J Management Launch. 2021;335:527–40.
Wang J, Li B, Huang D, et al. Nano-in-nano dendrimer gel particles for environment friendly topical supply of antiglaucoma medicine into the attention. Chem Eng J. 2021;425:130498.
Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their software in drug supply. Pharmaceutics. 2019;11(2):55.
Keam SJ, Scott LJ, Curran MP. Verteporfin: a overview of its use within the administration of subfoveal choroidal neovascularisation. Medication. 2003;63(22):2521–54.
Tavakoli S, Peynshaert Okay, Lajunen T, et al. Ocular boundaries to retinal supply of intravitreal liposomes: influence of vitreoretinal interface. J Management Launch. 2020;328:952–61.
Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular methods in ocular drug supply: an outline. Int J Pharm. 2004;269(1):1–14.
Lajunen T, Nurmi R, Kontturi L, et al. Gentle activated liposomes: performance and prospects in ocular drug supply. J Management Launch. 2016;244(Pt B):157–66.
Chen X, Wu J, Lin X, et al. Tacrolimus loaded cationic liposomes for dry eye therapy. Entrance Pharmacol. 2022;13:838168.
Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug supply. Drug Discov At present. 2008;13(3–4):144–51.
Chen S, Hanning S, Falconer J, Locke M, Wen J. Current advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and beauty functions. Eur J Pharm Biopharm. 2019;144:18–39.
Gan L, Wang J, Jiang M, et al. Current advances in topical ophthalmic drug supply with lipid-based nanocarriers. Drug Discov At present. 2013;18(5–6):290–7.
Verma A, Tiwari A, Saraf S, Panda PK, Jain A, Jain SK. Rising potential of niosomes in ocular supply. Professional Opin Drug Deliv. 2021;18(1):55–71.
Farha AK, Gan RY, Li HB, et al. The anticancer potential of the dietary polyphenol rutin: present standing, challenges, and views. Crit Rev Meals Sci Nutr. 2022;62(3):832–59.
Wichayapreechar P, Anuchapreeda S, Phongpradist R, Rungseevijitprapa W, Ampasavate C. Dermal focusing on of Centella asiatica extract utilizing hyaluronic acid floor modified niosomes. J Liposome Res. 2020;30(2):197–207.
Kattar A, Quelle-Regaldie A, Sánchez L, Concheiro A, Alvarez-Lorenzo C. Formulation and characterization of epalrestat-loaded polysorbate 60 cationic niosomes for ocular supply. Pharmaceutics. 2023;15(4):1247.
Allam A, Elsabahy M, El Badry M, Eleraky NE. Betaxolol-loaded niosomes built-in inside pH-sensitive in situ forming gel for administration of glaucoma. Int J Pharm. 2021;598:120380.
Fathalla D, Fouad EA, Soliman GM. Latanoprost niosomes as a sustained launch ocular supply system for the administration of glaucoma. Drug Dev Ind Pharm. 2020;46(5):806–13.
Coursey TG, Henriksson JT, Marcano DC, et al. Dexamethasone nanowafer as an efficient remedy for dry eye illness. J Management Launch. 2015;213:168–74.
Marcano DC, Shin CS, Lee B, et al. Synergistic cysteamine supply nanowafer as an efficacious therapy modality for corneal cystinosis. Mol Pharm. 2016;13(10):3468–77.
Yuan X, Marcano DC, Shin CS, et al. Ocular drug supply nanowafer with enhanced therapeutic efficacy. ACS Nano. 2015;9(2):1749–58.
Dourado LFN, da Silva CN, Gonçalves RS, et al. Enchancment of PnPP-19 peptide bioavailability for glaucoma remedy: design and software of nanowafers primarily based on PVA. J Drug Deliv Sci Technol. 2022;74:103501.
Rykowska I, Nowak I, Nowak R. Delicate contact lenses as drug supply methods: a overview. Molecules. 2021;26(18):5577.
Peral A, Martinez-Aguila A, Pastrana C, Huete-Toral F, Carpena-Torres C, Carracedo G. Contact lenses as drug supply system for glaucoma: a overview. Appl Sci. 2020;10(15):5151.
Filipe HP, Henriques J, Reis P, Silva PC, Quadrado MJ, Serro AP. Contact lenses as drug managed launch methods: a story overview. Rev Bras Oftalmol. 2016;75:241–7.
Choi SW, Kim J. Therapeutic contact lenses with polymeric autos for ocular drug supply: a overview. Supplies (Basel). 2018;11(7):1125.
Hsu KH, Carbia BE, Plummer C, Chauhan A. Twin drug supply from vitamin E loaded contact lenses for glaucoma remedy. Eur J Pharm Biopharm. 2015;94:312–21.
Soeken TA, Ross AE, Kohane DS, et al. Dexamethasone-eluting contact lens for the prevention of postphotorefractive keratectomy scar in a New Zealand white rabbit mannequin. Cornea. 2021;40(9):1175–80.
Maulvi FA, Soni TG, Shah DO. A overview on therapeutic contact lenses for ocular drug supply. Drug Deliv. 2016;23(8):3017–26.
Shayani Rad M, Sabeti Z, Mohajeri SA, Fazly Bazzaz BS. Preparation, characterization, and analysis of zinc oxide nanoparticles suspension as an antimicrobial media for every day use comfortable contact lenses. Curr Eye Res. 2020;45(8):931–9.
Bin Sahadan MY, Tong WY, Tan WN, et al. Phomopsidione nanoparticles coated contact lenses scale back microbial keratitis inflicting pathogens. Exp Eye Res. 2019;178:10–4.
Jiao Z, Huo Q, Lin X, et al. Drug-free contact lens primarily based on quaternized chitosan and tannic acid for bacterial keratitis remedy and corneal restore. Carbohydr Polym. 2022;286:119314.
Ding X, Ben-Shlomo G, Que L. Delicate contact lens with embedded microtubes for sustained and self-adaptive drug supply for glaucoma therapy. ACS Appl Mater Interfaces. 2020;12(41):45789–95.
Cooper RC, Yang H. Hydrogel-based ocular drug supply methods: rising fabrication methods, functions, and bench-to-bedside manufacturing issues. J Management Launch. 2019;306:29–39.
Irimia T, Dinu-Pîrvu CE, Ghica MV, et al. Chitosan-based in situ gels for ocular supply of therapeutics: a state-of-the-art overview. Mar Medication. 2018;16(10):373.
Sacco P, Furlani F, De Marzo G, Marsich E, Paoletti S, Donati I. Ideas for growing bodily gels of chitosan and of chitosan derivatives. Gels. 2018;4(3):67.
Zhang Z, Ai S, Yang Z, Li X. Peptide-based supramolecular hydrogels for native drug supply. Adv Drug Deliv Rev. 2021;174:482–503.
Arranz-Romera A, Esteban-Pérez S, Garcia-Herranz D, Aragón-Navas A, Bravo-Osuna I, Herrero-Vanrell R. Mixture remedy and co-delivery methods to optimize therapy of posterior section neurodegenerative ailments. Drug Discov At present. 2019;24(8):1644–53.
Lin S, Ge C, Wang D, et al. Overcoming the anatomical and physiological boundaries in topical eye floor medicine utilizing a peptide-decorated polymeric micelle. ACS Appl Mater Interfaces. 2019;11(43):39603–12.
Fang G, Wang Q, Yang X, Qian Y, Zhang G, Tang B. γ-Cyclodextrin-based polypseudorotaxane hydrogels for ophthalmic supply of flurbiprofen to deal with anterior uveitis. Carbohydr Polym. 2022;277:118889.
Jung JH, Kim SS, Chung H, Hejri A, Prausnitz MR. Six-month sustained supply of anti-VEGF from in-situ forming hydrogel within the suprachoroidal area. J Management Launch. 2022;352:472–84.
Gao H, Chen M, Liu Y, et al. Injectable anti-inflammatory supramolecular nanofiber hydrogel to advertise anti-VEGF remedy in age-related macular degeneration therapy. Adv Mater. 2023;35(2):e2204994.
Lee Okay, Goudie MJ, Tebon P, et al. Non-transdermal microneedles for superior drug supply. Adv Drug Deliv Rev. 2020;165–166:41–59.
Zhu J, Zhou X, Kim HJ, et al. Gelatin methacryloyl microneedle patches for minimally invasive extraction of pores and skin interstitial fluid. Small. 2020;16(16):e1905910.
Jiang J, Moore JS, Edelhauser HF, Prausnitz MR. Intrascleral drug supply to the attention utilizing hole microneedles. Pharm Res. 2009;26(2):395–403.
Gupta P, Yadav KS. Purposes of microneedles in delivering medicine for varied ocular ailments. Life Sci. 2019;237:116907.
Shi H, Zhou J, Wang Y, et al. A speedy corneal therapeutic microneedle for environment friendly ocular drug supply. Small. 2022;18(4):e2104657.
Cui M, Zheng M, Wiraja C, et al. Ocular supply of predatory micro organism with cryomicroneedles in opposition to eye an infection. Adv Sci (Weinh). 2021;8(21):e2102327.
Lee Okay, Park S, Jo DH, et al. Self-plugging microneedle (SPM) for intravitreal drug supply. Adv Healthc Mater. 2022;11(12):e2102599.
Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug supply to the retina: present standing and implications for gene remedy. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(12):1477–507.
Musarella MA. Gene mapping of ocular ailments. Surv Ophthalmol. 1992;36(4):285–312.
Cheng KJ, Hsieh CM, Nepali Okay, Liou JP. Ocular illness therapeutics: design and supply of medicine for ailments of the attention. J Med Chem. 2020;63(19):10533–93.
Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Present scientific functions of in vivo gene remedy with AAVs. Mol Ther. 2021;29(2):464–88.
Dunbar CE, Excessive KA, Joung JK, Kohn DB, Ozawa Okay, Sadelain M. Gene remedy comes of age. Science. 2018;359(6372):eaan4672.
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene remedy within the anterior eye section. Curr Gene Ther. 2022;22(2):104–31.
Ren W, Duan S, Dai C, Xie C, Jiang L, Shi Y. Nanotechnology lighting the best way for gene remedy in ophthalmopathy: from alternatives towards functions. Molecules. 2023;28(8):3500.
Colella P, Cotugno G, Auricchio A. Ocular gene remedy: present progress and future prospects. Traits Mol Med. 2009;15(1):23–31.
Naso MF, Tomkowicz B, Perry WL third, Strohl WR. Adeno-associated virus (AAV) as a vector for gene remedy. BioDrugs. 2017;31(4):317–34.
Bastola P, Track L, Gilger BC, Hirsch ML. Adeno-associated virus mediated gene remedy for corneal ailments. Pharmaceutics. 2020;12(8):767.
Tarallo V, Bogdanovich S, Hirano Y, et al. Inhibition of choroidal and corneal pathologic neovascularization by Plgf1-de gene switch. Make investments Ophthalmol Vis Sci. 2012;53(13):7989–96.
Lu Y, Tai PWL, Ai J, et al. Transcriptome profiling of neovascularized corneas reveals miR-204 as a multi-target biotherapy deliverable by rAAVs. Mol Ther Nucleic Acids. 2018;10:349–60.
Kaemmerer WF. How will the sector of gene remedy survive its success? Bioeng Transl Med. 2018;3(2):166–77.
Jiang J, Zhang X, Tang Y, Li S, Chen J. Progress on ocular siRNA gene-silencing remedy and drug supply methods. Fundam Clin Pharmacol. 2021;35(1):4–24.
Del Amo EM, Urtti A. Present and future ophthalmic drug supply methods. A shift to the posterior section. Drug Discov At present. 2008;13(3–4):135–43.
Ma Y, Lin H, Wang P, et al. A miRNA-based gene remedy nanodrug synergistically enhances pro-inflammatory antitumor immunity in opposition to melanoma. Acta Biomater. 2023;155:538–53.
Ribeiro MCS, de Miranda MC, Cunha PDS, et al. Neuroprotective impact of siRNA entrapped in hyaluronic acid-coated lipoplexes by intravitreal administration. Pharmaceutics. 2021;13(6):845.
Kumar S, Fry LE, Wang JH, et al. RNA-targeting methods as a platform for ocular gene remedy. Prog Retin Eye Res. 2023;92:101110.
Russell SR, Drack AV, Cideciyan AV, et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis sort 10: a part 1b/2 trial. Nat Med. 2022;28(5):1014–21.
Supe S, Upadhya A, Singh Okay. Position of small interfering RNA (siRNA) in focusing on ocular neovascularization: a overview. Exp Eye Res. 2021;202:108329.
Wang J, Zhao P, Chen Z, Wang H, Wang Y, Lin Q. Non-viral gene remedy utilizing RNA interference with PDGFR-α mediated epithelial-mesenchymal transformation for proliferative vitreoretinopathy. Mater At present Bio. 2023;20:100632.
Dhurandhar D, Sahoo NK, Mariappan I, Narayanan R. Gene remedy in retinal ailments: a overview. Indian J Ophthalmol. 2021;69(9):2257–65.
Sander JD, Joung JK. CRISPR-Cas methods for enhancing, regulating and focusing on genomes. Nat Biotechnol. 2014;32:347–55.
Guo N, Liu JB, Li W, Ma YS, Fu D. The ability and the promise of CRISPR/Cas9 genome enhancing for scientific software with gene remedy. J Adv Res. 2022;40:135–52.
Gumerson JD, Alsufyani A, Yu W, et al. Restoration of RPGR expression in vivo utilizing CRISPR/Cas9 gene enhancing. Gene Ther. 2022;29(1–2):81–93.
Chung SH, Sin TN, Dang B, et al. CRISPR-based VEGF suppression utilizing paired information RNAs for therapy of choroidal neovascularization. Mol Ther Nucleic Acids. 2022;28:613–22.
Banskota S, Raguram A, Suh S, et al. Engineered virus-like particles for environment friendly in vivo supply of therapeutic proteins. Cell. 2022;185(2):250-265.e16.
Manukonda R, Attem J, Yenuganti VR, Kaliki S, Vemuganti GK. Exosomes within the visible system: new avenues in ocular ailments. Tumour Biol. 2022;44(1):129–52.
Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Sign. 2021;19(1):47.
Feng X, Peng Z, Yuan L, et al. Analysis progress of exosomes in pathogenesis, analysis, and therapy of ocular ailments. Entrance Bioeng Biotechnol. 2023;11:1100310.
Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49(3):347–60.
Kalluri R, LeBleu VS. The biology, perform, and biomedical functions of exosomes. Science. 2020;367(6478):eaau6977.
Dong X, Lei Y, Yu Z, et al. Exosome-mediated supply of an anti-angiogenic peptide inhibits pathological retinal angiogenesis. Theranostics. 2021;11(11):5107–26.
Tian Y, Zhang F, Qiu Y, et al. Discount of choroidal neovascularization through cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells. Nat Biomed Eng. 2021;5(9):968–82.
Zhou T, He C, Lai P, et al. miR-204-containing exosomes ameliorate GVHD-associated dry eye illness. Sci Adv. 2022;8(2):eabj9617.
Herrmann IK, Wooden MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug supply platform. Nat Nanotechnol. 2021;16(7):748–59.
Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of extracellular vesicles by fusion with liposomes for the design of customized biogenic drug supply methods. ACS Nano. 2018;12(7):6830–42.
Kojima R, Bojar D, Rizzi G, et al. Designer exosomes produced by implanted cells intracerebrally ship therapeutic cargo for Parkinson’s illness therapy. Nat Commun. 2018;9(1):1305.
Siqueira Jørgensen SD, Al Sawaf M, Graeser Okay, Mu H, Müllertz A, Rades T. The power of two in vitro lipolysis fashions reflecting the human and rat gastro-intestinal circumstances to foretell the in vivo efficiency of SNEDDS dosing regimens. Eur J Pharm Biopharm. 2018;124:116–24.
Pouton CW. Lipid formulations for oral administration of medicine: non-emulsifying, self-emulsifying and “self-microemulsifying” drug supply methods. Eur J Pharm Sci. 2000;11(Suppl 2):S93–8.
Ujhelyi Z, Vecsernyés M, Fehér P, et al. Physico-chemical characterization of self-emulsifying drug supply methods. Drug Discov At present Technol. 2018;27:81–6.
Li Z, Xu D, Yuan Y, et al. Advances of spontaneous emulsification and its essential functions in enhanced oil restoration course of. Adv Colloid Interface Sci. 2020;277:102119.
Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-emulsifying drug-delivery methods: from the event to the present functions and challenges in oral drug supply. Pharmaceutics. 2020;12(12):1194.
López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, et al. Growth of an osmoprotective microemulsion as a therapeutic platform for ocular floor safety. Int J Pharm. 2022;623:121948.
Kontogiannidou E, Meikopoulos T, Gika H, et al. In vitro analysis of self-nano-emulsifying drug supply methods (SNEDDS) containing room temperature ionic liquids (RTILs) for the oral supply of amphotericin B. Pharmaceutics. 2020;12(8):699.
Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small. 2005;1(2):172–9.
Zhang T, Wei C, Wu X, et al. Characterization and analysis of rapamycin-loaded nano-micelle ophthalmic resolution. J Funct Biomater. 2023;14(1):49.
Barenholz Y. Doxil®–the primary FDA-approved nano-drug: classes realized. J Management Launch. 2012;160(2):117–34.
Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene supply to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.
Toropainen E, Fraser-Miller SJ, Novakovic D, et al. Biopharmaceutics of topical ophthalmic suspensions: significance of viscosity and particle dimension in ocular absorption of indomethacin. Pharmaceutics. 2021;13(4):452.
Younes NF, Abdel-Halim SA, Elassasy AI. Corneal focused Sertaconazole nitrate loaded cubosomes: Preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo research. Int J Pharm. 2018;553(1–2):386–97.
Bali V, Ali M, Ali J. Research of surfactant mixtures and improvement of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids Surf B Biointerfaces. 2010;76(2):410–20.
Tamilvanan S, Benita S. The potential of lipid emulsion for ocular supply of lipophilic medicine. Eur J Pharm Biopharm. 2004;58(2):357–68.
Apaolaza PS, Delgado D, del Pozo-Rodríguez A, Gascón AR, Solinís MÁ. A novel gene remedy vector primarily based on hyaluronic acid and strong lipid nanoparticles for ocular ailments. Int J Pharm. 2014;465(1–2):413–26.
Fangueiro JF, Andreani T, Egea MA, et al. Design of cationic lipid nanoparticles for ocular supply: improvement, characterization and cytotoxicity. Int J Pharm. 2014;461(1–2):64–73.
Fahmy AM, Hassan M, El-Setouhy DA, Tayel SA, Al-Mahallawi AM. Voriconazole ternary micellar methods for the therapy of ocular mycosis: statistical optimization and in vivo analysis. J Pharm Sci. 2021;110(5):2130–8.
Balguri SP, Adelli GR, Janga KY, Bhagav P, Majumdar S. Ocular disposition of ciprofloxacin from topical, PEGylated nanostructured lipid carriers: Impact of molecular weight and density of poly (ethylene) glycol. Int J Pharm. 2017;529(1–2):32–43.
Nayak Okay, Misra M. Triamcinolone acetonide-Loaded PEGylated microemulsion for the posterior section of eye. ACS Omega. 2020;5(14):7928–39.
Lakhani P, Patil A, Wu KW, et al. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug supply. Int J Pharm. 2019;572:118771.
Craig JP, Simmons PA, Patel S, Tomlinson A. Refractive index and osmolality of human tears. Optom Vis Sci. 1995;72(10):718–24.
Patel N, Nakrani H, Raval M, Sheth N. Growth of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained supply and enhanced ocular bioavailability. Drug Deliv. 2016;23(9):3712–23.
Fialho SL, da Silva-Cunha A. New car primarily based on a microemulsion for topical ocular administration of dexamethasone. Clin Exp Ophthalmol. 2004;32(6):626–32.
López-Alemany A, Montés-Micó R, García-Valldecabres M. Ocular physiology and synthetic tears. J Am Optom Assoc. 1999;70(7):455–60.
Moiseev RV, Steele F, Khutoryanskiy VV. Polyaphron formulations stabilised with completely different water-soluble polymers for ocular drug supply. Pharmaceutics. 2022;14(5):926.
Radomska-Soukharev A, Wojciechowska J. Microemulsions as potential ocular drug supply methods: part diagrams and bodily properties relying on components. Acta Pol Pharm. 2005;62(6):465–71.
Doshi U, Xu J. Impact of viscosity, floor rigidity and mucoadhesion on ocular residence time of lubricant eye drops. Make investments Ophthalmol Vis Sci. 2009;50(13):4641–4641.
Luo Q, Zhao J, Zhang X, Pan W. Nanostructured lipid provider (NLC) coated with Chitosan Oligosaccharides and its potential use in ocular drug supply system. Int J Pharm. 2011;403(1–2):185–91.
Stahl U, Willcox M, Stapleton F. Osmolality and tear movie dynamics. Clin Exp Optom. 2012;95(1):3–11.
Murube J. Tear osmolarity. Ocul Surf. 2006;4(2):62–73.
Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, et al. Drug supply to the posterior section of the attention: biopharmaceutic and pharmacokinetic issues. Pharmaceutics. 2020;12(3):269.
Shetty R, Naidu JR, Nair AP, et al. Distinct ocular floor soluble issue profile in human corneal dystrophies. Ocul Surf. 2020;18(2):237–48.
Romeo A, Musumeci T, Carbone C, et al. Ferulic acid-loaded polymeric nanoparticles for potential ocular supply. Pharmaceutics. 2021;13(5):687.
Carnevale C, Riva I, Roberti G, et al. Confocal microscopy and anterior section optical coherence tomography imaging of the ocular floor and bleb morphology in medically and surgically handled glaucoma sufferers: a overview. Prescribed drugs (Basel). 2021;14(6):581.
Khalil IA, Ali IH, El-Sherbiny IM. Noninvasive biodegradable nanoparticles-in-nanofibers single-dose ocular insert: in vitro, ex vivo and in vivo analysis. Nanomedicine (Lond). 2019;14(1):33–55.
Leonardi A, Bucolo C, Romano GL, et al. Affect of various surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int J Pharm. 2014;470(1–2):133–40.
Ammar HO, Haider M, Ibrahim M, El Hoffy NM. In vitro and in vivo investigation for optimization of niosomal skill for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug Deliv. 2017;24(1):414–21.
Tavakoli M, Mahboobian MM, Nouri F, Mohammadi M. Learning the ophthalmic toxicity potential of developed ketoconazole loaded nanoemulsion in situ gel formulation for ophthalmic administration. Toxicol Mech Strategies. 2021;31(8):572–80.
Mahboobian MM, Seyfoddin A, Aboofazeli R, Foroutan SM, Rupenthal ID. Brinzolamide-loaded nanoemulsions: ex vivo transcorneal permeation, cell viability and ocular irritation checks. Pharm Dev Technol. 2019;24(5):600–6.
Ames P, Galor A. Cyclosporine ophthalmic emulsions for the therapy of dry eye: a overview of the scientific proof. Clin Investig (Lond). 2015;5(3):267–85.
Boujnah Y, Mouchel R, El-Chehab H, Dot C, Burillon C, Kocaba V. Étude potential, monocentrique, non contrôlée de l’efficacité, de la tolérance et de l’adhésion au traitement par ciclosporine 0,1 % au cours des sécheresses oculaires sévères [Prospective, monocentric, uncontrolled study of efficacy, tolerance and adherence of cyclosporin 0.1 % for severe dry eye syndrome]. J Fr Ophtalmol. 2018;41(2):129–35.
Mandal A, Gote V, Pal D, Ogundele A, Mitra AK. Ocular Pharmacokinetics of a topical ophthalmic nanomicellar resolution of cyclosporine (Cequa®) for dry eye illness. Pharm Res. 2019;36(2):36.
Henostroza M, Melo Okay, Yukuyama MN, Löbenberg R, Bou-Chacra NA. Cationic rifampicin nanoemulsion for the therapy of ocular tuberculosis. Colloids Surf, A. 2020;597:124755.
Kagkelaris Okay, Panayiotakopoulos G, Georgakopoulos CD. Nanotechnology-based formulations to amplify intraocular bioavailability. Ther Adv Ophthalmol. 2022;14:25158414221112356.
Eroglu YI. A comparative overview of Haute Autorité de Santé and Nationwide Institute for Well being and Care Excellence well being know-how assessments of Ikervis® to deal with extreme keratitis in grownup sufferers with dry eye illness which has not improved regardless of therapy with tear substitutes. J Mark Entry Well being Coverage. 2017;5(1):1336043.
Boyer DS, Yoon YH, Belfort R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in sufferers with diabetic macular edema. Ophthalmology. 2014;121(10):1904–14.
Wentz SM, Value F, Harris A, Siesky B, Ciulla T. Efficacy and security of bromfenac 0.075% formulated in DuraSite for ache and irritation in cataract surgical procedure. Professional Opin Pharmacother. 2019;20(14):1703–9.
Rodrigues GA, Lutz D, Shen J, et al. Topical drug supply to the posterior section of the attention: addressing the problem of preclinical to scientific translation. Pharm Res. 2018;35(12):245.
Ahn SJ, Hong HK, Na YM, et al. Use of rabbit eyes in pharmacokinetic research of intraocular medicine. J Vis Exp. 2016;113:53878.
U.S. Nationwide Library of Drugs, A randomized managed trial evaluating urea loaded nanoparticles to placebo: a brand new idea for cataract administration, NCT03001466, 2016.
Kim T, Sall Okay, Holland EJ, Brazzell RK, Coultas S, Gupta PK. Security and efficacy of twice every day administration of KPI-121 1% for ocular irritation and ache following cataract surgical procedure. Clin Ophthalmol. 2018;13:69–86.
U.S. Nationwide Library of Drugs, POLAT-001 in comparison with latanoprost ophthalmic resolution in sufferers with ocular hypertension and open-angle glaucoma, NCT02466399, 2020.
Wang LR, Wang Y, Wang SLW, Jingjing JC, Xingguo H. Seed crystal nanoparticles tetrandrine ophthalmic formulation and preparation methodology. C.N. Patent CN 1,05,726,484 B, 2016.
Jialu WLR, Ruijuan LWL, Ze ZFW. Puerarin and scutellarin lipid nanoparticle ophthalmic preparation and preparation methodology thereof. C.N. Patent CN 1,08,066,315 A, 2016.
Li CY, Li YP, Ying WH, Hangping C. Timolol maleate cubic liquid crystal nanoparticle eye drops and preparation methodology thereof. C.N. Patent CN 1,06,619,573 A, 2016.
Lee JY, Shin YJ, Sang-Rok R. ophthalmic nanoemulsion composition containing cyclosporine and methodology for making ready identical, PH12015502587B1, 2016.
Wang SJ, Cha KH, Kang H, Solar BK. Cyclosporine-containing non-irritative nanoemulsion ophthalmic composition, US 9,320,801 B2, 2016.
XU S, Zhu Y, Fan Q, Ou S, Liu X. nanosuspension of tobramycin and dexamethasone and preparation methodology thereof, CN105708844, 2016.
Weiss, S.L. Therapy of glaucoma and/or retinal ailments. WO 2017152129A2, 9 August 2017.
Yates CR, Smith JS, Miller DD, Toutounchian JJ. Technique for regulating retinal endothelial cell viability, in, US 9,566,255, 2017.
Chen H, Enlow EM, Popov A. Pharmaceutical nanoparticles exhibiting improved mucosal transport. A.U. Patent AU 2,013,256,092 B2, 2017.
Campora G. Nanoparticle ophthalmic composition for the therapy of ocular problems or ailments. U.S. Patent US 20,190,070,242 A1, 2018.
Dongwoo L, Hyunju B, Younggwan Okay. Non-irritant ophthalmic composition containing cyclosporin, and handy preparation methodology, US 15/747,618, 2018.
Yates CR, Smith JS, Miller DD, Toutounchian JJ. Technique for regulating retinal endothelial cell viability, in, US 10,010,516, 2018.
Lopes FP, Jose E. Compositions of jasmonate compounds and strategies of use. US 20,180,000,958 A1, 2018.
Arumugham R, Upadhyay AK. Ophthalmic compositions and strategies of use. U.S. Patent US 20,190,008,920 A1, 2018.
Venkatraman S, Natarajan JV, Howden T, Boey F. inventors; Nanyang Technological College, Singapore Well being Providers Pte Ltd, assignee. Steady liposomal formulations for ocular drug supply. United States patent US 9,956,195. 2018 Could 1.
Barman SP, Liu M, Barman Okay, Ward KL, Hackett B. inventors; Integral Biosystems LLC, assignee. Strategies and biocompatible compositions to attain sustained drug launch within the eye. United States patent US 9,931,306. 2018 Apr 3.
Fu J, Campochiaro PA, Hanes JS. inventors; Johns Hopkins College, assignee. Non-linear multiblock copolymer-drug conjugates for the supply of energetic brokers. United States patent software US 16/182,261. 2019 Mar 7.
Davis ME, Davishan ME, Han H. Nanoparticles stabilized by nitrophenylboronic acid composition. JP 2,019,108,372A, 2019.
Lee HC. Drug supply implant for treating eye ailments, and preparation methodology due to this fact. WO 2,019,160,306A1, 2019.
Liposome Corticosteroid for the Regionally Injecting in Irritation Lesion or Area. CN 109906075A, 18 June 2019.
Aquilue JS, Gris MDCL, Gan˜an MID. ´ An oil-in-water nanoemulsion composition of clobetasol, in: WO2018233878A1, 2019.
Rasappa Arumugham AU. Ophthalmic compositions and strategies of use, in: WO2020047197A1, 2020.
Junyeop L, Jae SY, Sang-rok R. Eye composition containing a cyclosporine and a technique of making ready the identical. KR20200000395A, 2 January 2020.
Chul-hwan Okay, Hyun-seop N, Hye-min Okay, Da-hye S. A surfactant-free sort ophthalmic nano-emulsion composition, and the manufacturing methodology thereof. KR 20200053205A, 18 Could 2020.
Qing D. Nanocrystalline eye drop, preparation methodology and software thereof. CN 110664757A, 28 Could 2020.
Jain S, Kompella UB, Musunuri S. Preservative free ocular compositions and strategies for utilizing the identical for treating dry eye illness and different eye problems, in: US10751337B2, 2020.