Sadi, T., Radevici, I. & Oksanen, J. Thermophotonic cooling with light-emitting diodes. Nat. Photon. 14, 205–214 (2020).
Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Floor chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12, 410–415 (2013).
Dai, X. et al. Answer-processed, high-performance light-emitting diodes based mostly on quantum dots. Nature 515, 96–99 (2014).
Li, X. et al. Brilliant colloidal quantum dot light-emitting diodes enabled by environment friendly chlorination. Nat. Photon. 12, 159–164 (2018).
Shen, H. et al. Seen quantum dot light-emitting diodes with simultaneous excessive brightness and effectivity. Nat. Photon. 13, 192–197 (2019).
Deng, Y. et al. Answer-processed inexperienced and blue quantum-dot light-emitting diodes with eradicated cost leakage. Nat. Photon. 16, 505–511 (2022).
Tauc, J. The share of thermal vitality taken from the environment within the electro-luminescent vitality radiated from a p–n junction. Cech. Fiz. Z. 7, 275–276 (1957).
Wurfel, P. The chemical-potential of radiation. J. Phys. C 15, 3967–3985 (1982).
Su, Q. & Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot gentle emitting diodes. Nat. Commun. 13, 369 (2022).
Lin, X. et al. Extremely-efficient thermoelectric-driven light-emitting diodes based mostly on colloidal quantum dots. Nano Res. 15, 9402–9409 (2022).
Li, N. et al. Extremely-low-power sub-photon-voltage high-efficiency light-emitting diodes. Nat. Photon. 13, 588–592 (2019).
Pal, B. N. et al. ‘Large’ CdSe/CdS core/shell nanocrystal quantum dots as environment friendly electroluminescent supplies: sturdy affect of shell thickness on light-emitting diode efficiency. Nano Lett. 12, 331–336 (2012).
Park, Y. S., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–255 (2019).
Qin, H. Y. et al. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. J. Am. Chem. Soc. 136, 179–187 (2014).
Lim, J., Park, Y.-S. & Klimov, V. I. Optical achieve in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2018).
Lim, J., Park, Y. S., Wu, Okay. F., Yun, H. J. & Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18, 6645–6653 (2018).
Lee, T. et al. Brilliant and secure quantum dot light-emitting diodes. Adv. Mater. 34, 202106276 (2021).
Qian, L., Zheng, Y., Xue, J. & Holloway, P. H. Steady and environment friendly quantum-dot light-emitting diodes based mostly on solution-processed multilayer constructions. Nat. Photon. 5, 543–548 (2011).
Neyts, Okay. A. Simulation of sunshine emission from thin-film microcavities. J. Decide. Soc. Am. A 15, 962–971 (1998).
Yang, Y. et al. Excessive-efficiency light-emitting gadgets based mostly on quantum dots with tailor-made nanostructures. Nat. Photon. 9, 259–266 (2015).
Mashford, B. S. et al. Excessive-efficiency quantum-dot light-emitting gadgets with enhanced cost injection. Nat. Photon. 7, 407–412 (2013).
Cao, W. et al. Extremely secure QLEDs with improved gap injection by way of quantum dot construction tailoring. Nat. Commun. 9, 2608 (2018).
Lin, J. et al. Excessive-performance quantum-dot light-emitting diodes utilizing NiOX hole-injection layers with a excessive and secure work operate. Adv. Funct. Mater. 30, 201907265 (2020).
Liu, D. et al. Extremely secure purple quantum dot light-emitting diodes with lengthy T95 operation lifetimes. J. Phys. Chem. Lett. 11, 3111–3115 (2020).
Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: darkish and vibrant exciton states. Phys. Rev. B 54, 4843–4856 (1996).
Pu, C. et al. Electrochemically-stable ligands bridge the photoluminescence–electroluminescence hole of quantum dots. Nat. Commun. 11, 937 (2020).
Chen, S. et al. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 10, 765 (2019).
Solar, Y. et al. Investigation on thermally induced effectivity roll-off: in direction of environment friendly and ultra-bright quantum-dot light-emitting diodes. ACS Nano 13, 11433–11442 (2019).
Scholz, S., Kondakov, D., Lüssem, B. & Leo, Okay. Degradation mechanisms and reactions in natural light-emitting gadgets. Chem. Rev. 115, 8449–8503 (2015).
Benisty, H., Stanley, R. & Mayer, M. Technique of supply phrases for dipole emission modification in modes of arbitrary planar constructions. J. Decide. Soc. Am. A 15, 1192–1201 (1998).
Cho, C. & Greenham, N. C. Computational research of dipole radiation in re‐absorbing perovskite semiconductors for optoelectronics. Adv. Sci. 8, 2003559 (2020).