You are currently viewing Combinatorial improvement of nebulized mRNA supply formulations for the lungs

Combinatorial improvement of nebulized mRNA supply formulations for the lungs


  • Kowalski, P. S., Rudra, A., Miao, L. & Anderson, D. G. Delivering the messenger: advances in applied sciences for therapeutic mRNA supply. Mol. Ther. 27, 710–728 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hajj, Okay. A. & Whitehead, Okay. A. Instruments for translation: non-viral supplies for therapeutic mRNA supply. Nat. Rev. Mater. 2, 1–17 (2017).

    Article 

    Google Scholar
     

  • Han, X. et al. An ionizable lipid toolbox for RNA supply. Nat. Commun. 12, 7233 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, M. et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome modifying of Angptl3. Proc. Natl Acad. Sci. USA 118, e2020401118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Swingle, Okay. L., Hamilton, A. G. & Mitchell, M. J. Lipid nanoparticle-mediated supply of mRNA therapeutics and vaccines. Tendencies Mol. Med. 27, 616–617 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Miao, L. et al. Supply of mRNA vaccines with heterocyclic lipids will increase anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Functionalized lipid-like nanoparticles for in vivo mRNA supply and base modifying. Sci. Adv. 6, eabc2315 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Billingsley, M. M. et al. Ionizable lipid nanoparticle-mediated mRNA supply for human CAR T cell engineering. Nano Lett. 20, 1578–1589 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Riley, R. S. et al. Ionizable lipid nanoparticles for in utero mRNA supply. Sci. Adv. 7, eaba1028 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sabnis, S. et al. A novel amino lipid collection for mRNA supply: improved endosomal escape and sustained pharmacology and security in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fenton, O. S. et al. Synthesis and organic analysis of ionizable lipid supplies for the in vivo supply of messenger RNA to B lymphocytes. Adv. Mater. 29, 1606944 (2017).

    Article 

    Google Scholar
     

  • Liu, J. et al. Quick and environment friendly CRISPR/Cas9 genome modifying in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv. Mater. 31, 1902575 (2019).

    Article 

    Google Scholar
     

  • Polack, F. P. et al. Security and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Baden, L. R. et al. Efficacy and security of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene modifying for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cornebise, M. et al. Discovery of a novel amino lipid that improves lipid nanoparticle efficiency by way of particular interactions with mRNA. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202106727 (2021).

  • Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The scientific progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chakraborty, C., Sharma, A. R., Bhattacharya, M. & Lee, S.-S. From COVID-19 to most cancers mRNA vaccines: shifting from bench to clinic within the vaccine panorama. Entrance. Immunol. 12, 2648 (2021).

    Article 

    Google Scholar
     

  • Cafri, G. et al. mRNA vaccine-induced neoantigen-specific T cell immunity in sufferers with gastrointestinal most cancers. J. Clin. Make investments. 130, 5976–5988 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Oberli, M. A. et al. Lipid nanoparticle assisted mRNA supply for potent most cancers immunotherapy. Nano Lett. 17, 1326–1335 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Espeseth, A. S. et al. Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protecting in rodent fashions of RSV an infection. NPJ Vaccines 5, 1–14 (2020).

    Article 

    Google Scholar
     

  • Aliprantis, A. O. et al. A part 1, randomized, placebo-controlled examine to judge the protection and immunogenicity of an mRNA-based RSV prefusion F protein vaccine in wholesome youthful and older adults. Hum. Vaccines Immunother. 17, 1248–1261 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bahl, Okay. et al. Preclinical and scientific demonstration of immunogenicity by mRNA vaccines towards H10N8 and H7N9 influenza viruses. Mol. Ther. 25, 1316–1327 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Feldman, R. A. et al. mRNA vaccines towards H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and nicely tolerated in wholesome adults in part 1 randomized scientific trials. Vaccine 37, 3326–3334 (2019).

    Article 
    CAS 

    Google Scholar
     

  • John, S. et al. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine 36, 1689–1699 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Medina-Magües, L. G. et al. mRNA vaccine protects towards zika virus. Vaccines 9, 1464 (2021).

    Article 

    Google Scholar
     

  • Mu, Z., Haynes, B. F. & Cain, D. W. HIV mRNA vaccines—progress and future paths. Vaccines 9, 134 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zabaleta, N., Torella, L., Weber, N. D. & Gonzalez-Aseguinolaza, G. mRNA and gene modifying: late breaking therapies in liver ailments. Hepatology https://doi.org/10.1002/hep.32441 (2022).

  • Robinson, E. et al. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol. Ther. 26, 2034–2046 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Da Silva Sanchez, A., Paunovska, Okay., Cristian, A. & Dahlman, J. E. Treating cystic fibrosis with mRNA and CRISPR. Hum. Gene Ther. 31, 940–955 (2020).

    Article 

    Google Scholar
     

  • Lai, M. et al. Gene modifying of DNAH11 restores regular cilia motility in major ciliary dyskinesia. J. Med. Genet. 53, 242–249 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Paff, T., Omran, H., Nielsen, Okay. G. & Haarman, E. G. Present and future remedies in major ciliary dyskinesia. Int. J. Mol. Sci. 22, 9834 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guan, S., Darmstädter, M., Xu, C. & Rosenecker, J. In vitro investigations on optimizing and nebulization of IVT-mRNA formulations for potential pulmonary-based α-1-antitrypsin deficiency therapy. Pharmaceutics 13, 1281 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zeyer, F. et al. mRNA-mediated gene supplementation of Toll-like receptors as therapy technique for bronchial asthma in vivo. PLoS ONE 11, e0154001 (2016).

    Article 

    Google Scholar
     

  • Mays, L. E. et al. Modified Foxp3 mRNA protects towards bronchial asthma by way of an IL-10–dependent mechanism. J. Clin. Make investments. 123, 1216–1228 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rakhra, Okay. et al. Exploiting albumin as a mucosal vaccine chaperone for strong technology of lung-resident reminiscence T cells. Sci. Immunol. 6, eabd8003 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bivas-Benita, M. et al. Pulmonary supply of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine 22, 1609–1615 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Rajapaksa, A. E. et al. Efficient pulmonary supply of an aerosolized plasmid DNA vaccine by way of floor acoustic wave nebulization. Respir. Res. 15, 60 (2014).

    Article 

    Google Scholar
     

  • Wu, M. et al. Intranasal vaccination with mannosylated chitosan formulated DNA vaccine permits strong IgA and mobile response induction within the lungs of mice and improves safety towards pulmonary mycobacterial problem. Entrance. Cell. Infect. Microbiol. 7, 445 (2017).

    Article 

    Google Scholar
     

  • King, R. G. et al. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity towards SARS-CoV-2 and absolutely protects mice from deadly problem. Vaccines 9, 881 (2021).

    Article 
    CAS 

    Google Scholar
     

  • An, X. et al. Single-dose intranasal vaccination elicits systemic and mucosal immunity towards SARS-CoV-2. iScience 24, 103037 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. C. et al. Technique to reinforce dendritic cell-mediated DNA vaccination within the lung. Adv. Ther. 3, 2000013 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, D. & Hickey, A. J. Pulmonary vaccine supply. Knowledgeable Rev. Vaccines 6, 213–226 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Sou, T. et al. New developments in dry powder pulmonary vaccine supply. Tendencies Biotechnol. 29, 191–198 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Huang, J. et al. A novel dry powder influenza vaccine and intranasal supply know-how: induction of systemic and mucosal immune responses in rats. Vaccine 23, 794–801 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Minne, A. et al. The supply web site of a monovalent influenza vaccine throughout the respiratory tract impacts on the immune response. Immunology 122, 316–325 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Exosomes adorned with a recombinant SARS-CoV-2 receptor-binding area as an inhalable COVID-19 vaccine. Nat. Biomed. Eng. 6, 791–805 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Patel, A. Okay. et al. Inhaled nanoformulated mRNA polyplexes for protein manufacturing in lung epithelium. Adv. Mater. 31, 1805116 (2019).

    Article 

    Google Scholar
     

  • Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the supply of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wilson, C. Future therapies for cystic fibrosis. Lancet Respir. Med. 10, e75–e76 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Witten, J., Samad, T. & Ribbeck, Okay. Selective permeability of mucus boundaries. Curr. Opin. Biotechnol. 52, 124–133 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Witten, J. & Ribbeck, Okay. The particle within the spider’s net: transport by way of organic hydrogels. Nanoscale 9, 8080–8095 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cone, R. A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61, 75–85 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Lieleg, O. & Ribbeck, Okay. Organic hydrogels as selective diffusion boundaries. Tendencies Cell Biol. 21, 543–551 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kim, N., Duncan, G. A., Hanes, J. & Suk, J. S. Boundaries to inhaled gene remedy of obstructive lung ailments: a assessment. J. Managed Launch 240, 465–488 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Coyne, C. B., Kelly, M. M., Boucher, R. C. & Johnson, L. G. Enhanced epithelial gene switch by modulation of tight junctions with sodium caprate. Am. J. Respir. Cell Mol. Biol. 23, 602–609 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Kauffman, Okay. J. et al. Optimization of lipid nanoparticle formulations for mRNA supply in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Billingsley, M. M. et al. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Lett. 22, 533–542 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. Payload distribution and capability of mRNA lipid nanoparticles. Nat. Commun. 13, 5561 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kauffman, Okay. J. et al. Fast, single-cell evaluation and discovery of vectored mRNA transfection in vivo with a loxP-flanked tdTomato reporter mouse. Mol. Ther. Nucleic Acids 10, 55–63 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ball, R. L., Bajaj, P. & Whitehead, Okay. A. Reaching long-term stability of lipid nanoparticles: analyzing the impact of pH, temperature, and lyophilization. Int. J. Nanomed. 12, 305–315 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, P. et al. Lengthy-term storage of lipid-like nanoparticles for mRNA supply. Bioact. Mater. 5, 358–363 (2020).


    Google Scholar
     

  • Crowe, J. H., Oliver, A. E., Hoekstra, F. A. & Crowe, L. M. Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the position of vitrification. Cryobiology 35, 20–30 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Ohtake, S., Schebor, C., Palecek, S. P. & de Pablo, J. J. Part conduct of freeze-dried phospholipid–ldl cholesterol mixtures stabilized with trehalose. Biochim. Biophys. Acta Biomembr. 1713, 57–64 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Eastman, S. J. et al. Optimization of formulations and situations for the aerosol supply of useful cationic lipid:DNA complexes. Hum. Gene Ther. 8, 313–322 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Whitehead, Okay. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA supply exercise. Nat. Commun. 5, 4277 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA supply and CRISPR–Cas gene modifying. Nat. Mater. 20, 701–710 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pezzulo, A. A. et al. The air–liquid interface and use of major cell cultures are necessary to recapitulate the transcriptional profile of in vivo airway epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 300, L25–L31 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hill, D. B. & Button, B. in Mucins: Strategies and Protocols (eds McGuckin, M. A. & Thornton, D. J.) 245–258 (Humana Press, 2012); https://doi.org/10.1007/978-1-61779-513-8_15

  • Ramachandran, S. et al. Environment friendly supply of RNA interference oligonucleotides to polarized airway epithelia in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 305, L23–L32 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Krishnamurthy, S. et al. Manipulation of cell physiology permits gene silencing in well-differentiated airway epithelia. Mol. Ther. Nucleic Acids 1, e41 (2012).

    Article 

    Google Scholar
     

  • Burgel, P.-R., Montani, D., Danel, C., Dusser, D. J. & Nadel, J. A. A morphometric examine of mucins and small airway plugging in cystic fibrosis. Thorax 62, 153–161 (2007).

    Article 

    Google Scholar
     

  • Ratjen, F. Cystic fibrosis: the position of the small airways. J. Aerosol Med. Pulm. Drug Deliv. 25, 261–264 (2012).

    Article 

    Google Scholar
     

  • van den Berge, M., ten Hacken, N. H. T., Cohen, J., Douma, W. R. & Postma, D. S. Small airway illness in bronchial asthma and COPD: scientific implications. Chest 139, 412–423 (2011).

    Article 

    Google Scholar
     

  • Tiddens, H. A. W. M., Donaldson, S. H., Rosenfeld, M. & Paré, P. D. Cystic fibrosis lung illness begins within the small airways: can we deal with it extra successfully? Pediatr. Pulmonol. 45, 107–117 (2010).

    Article 

    Google Scholar
     

  • Tatsuta, M. et al. Results of cigarette smoke on barrier operate and tight junction proteins within the bronchial epithelium: protecting position of cathelicidin LL-37. Respir. Res. 20, 251 (2019).

    Article 

    Google Scholar
     

  • Maeki, M., Uno, S., Niwa, A., Okada, Y. & Tokeshi, M. Microfluidic applied sciences and units for lipid nanoparticle-based RNA supply. J. Management. Launch 344, 80–96 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, M. H. Y. et al. Induction of bleb buildings in lipid nanoparticle formulations of mRNA results in improved transfection efficiency. Adv. Mater. https://doi.org/10.1002/adma.202303370 (2023).

  • Brader, M. L. et al. Encapsulation state of messenger RNA inside lipid nanoparticles. Biophys. J. 120, 2766–2770 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kulkarni, J. A. et al. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale 11, 9023–9031 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Richardson, S. J., Bai, A., Kulkarni, A. A. & Moghaddam, M. F. Effectivity in drug discovery: liver S9 fraction assay as a display screen for metabolic stability. Drug Metab. Lett. 10, 83–90 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Scholte, B. J., Davidson, D. J., Wilke, M. & de Jonge, H. R. Animal fashions of cystic fibrosis. J. Cyst. Fibros. 3, 183–190 (2004).

    Article 
    CAS 

    Google Scholar
     

  • McCarron, A., Donnelley, M. & Parsons, D. Airway illness phenotypes in animal fashions of cystic fibrosis. Respir. Res. 19, 54 (2018).

    Article 

    Google Scholar
     

  • Kim, N. et al. Inhaled gene remedy of preclinical muco-obstructive lung ailments by nanoparticles able to breaching the airway mucus barrier. Thorax 77, 812–820 (2022).

    Article 

    Google Scholar
     

  • Phillips, J. E., Zhang, X. & Johnston, J. A. Dry powder and nebulized aerosol inhalation of prescription drugs delivered to mice utilizing a nose-only publicity system. J. Vis. Exp. https://doi.org/10.3791/55454 (2017).

  • Beck, S. E. et al. Deposition and expression of aerosolized rAAV vectors within the lungs of rhesus macaques. Mol. Ther. 6, 546–554 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Woo, C. J. et al. Inhaled supply of a lipid nanoparticle encapsulated messenger RNA encoding a ciliary protein for the therapy of major ciliary dyskinesia. Pulm. Pharmacol. Ther. 75, 102134 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Okuda, Okay. et al. Secretory cells dominate airway CFTR expression and performance in human airway superficial epithelia. Am. J. Respir. Crit. Care Med. 203, 1275–1289 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Carraro, G. et al. Transcriptional evaluation of cystic fibrosis airways at single-cell decision reveals altered epithelial cell states and composition. Nat. Med. 27, 806–814 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hodges, C. A. & Conlon, R. A. Delivering on the promise of gene modifying for cystic fibrosis. Genes Dis. 6, 97–108 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vanover, D. et al. Nebulized mRNA-encoded antibodies shield hamsters from SARS-CoV-2 an infection. Adv. Sci. 9, 2202771 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA supply. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D. et al. Fast discovery of potent siRNA-containing lipid nanoparticles enabled by managed microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Heyes, J., Palmer, L., Bremner, Okay. & MacLachlan, I. Cationic lipid saturation influences intracellular supply of encapsulated nucleic acids. J. Management. Launch 107, 276–287 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply