You are currently viewing Breaking by means of the basement membrane barrier to enhance nanotherapeutic supply to tumours

Breaking by means of the basement membrane barrier to enhance nanotherapeutic supply to tumours


  • Dewhirst, M. W. & Secomb, T. W. Transport of medicine from blood vessels to tumour tissue. Nat. Rev. Most cancers 17, 738–750 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Blanco, E., Shen, H. & Ferrari, M. Rules of nanoparticle design for overcoming organic boundaries to drug supply. Nat. Biotechnol. 33, 941–951 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wilhelm, S. et al. Evaluation of nanoparticle supply to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sindhwani, S. et al. The entry of nanoparticles into strong tumours. Nat. Mater. 19, 566–575 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug supply. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wettschureck, N., Strilic, B. & Offermanns, S. Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol. Rev. 99, 1467–1525 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Glassman, P. M. et al. Concentrating on drug supply within the vascular system: deal with endothelium. Adv. Drug Deliv. Rev. 157, 96–117 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Setyawati, M. I., Tay, C. Y., Docter, D., Stauber, R. H. & Leong, D. T. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem. Soc. Rev. 44, 8174–8199 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Cahill, P. A. & Redmond, E. M. Vascular endothelium—gatekeeper of vessel well being. Atherosclerosis 248, 97–109 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Q. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and therapy efficacy. Nat. Nanotechnol. 14, 799–809 (2019).

    Article 
    CAS 

    Google Scholar
     

  • El-Kareh, A. W. & Secomb, T. W. A mathematical mannequin for comparability of bolus injection, steady infusion, and liposomal supply of doxorubicin to tumor cells. Neoplasia 2, 325–338 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Hendriks, B. S. et al. Multiscale kinetic modeling of liposomal doxorubicin supply quantifies the position of tumor and drug-specific parameters in native supply to tumors. CPT Pharmacomet. Syst. Pharmacol. 1, e15 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Harashima, H., Iida, S., Urakami, Y., Tsuchihashi, M. & Kiwada, H. Optimization of antitumor impact of liposomally encapsulated doxorubicin based mostly on simulations by pharmacokinetic/pharmacodynamic modeling. J. Management. Launch 61, 93–106 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Jayadev, R. & Sherwood, D. R. Basement membranes. Curr. Biol. 27, R207–R211 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nikolova, G., Strilic, B. & Lammert, E. The vascular area of interest and its basement membrane. Traits Cell Biol. 17, 19–25 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Reuten, R. et al. Basement membrane stiffness determines metastases formation. Nat. Mater. 20, 892–903 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and the way? Traits Cell Biol. 18, 560–574 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Chaudhuri, O. et al. Extracellular matrix stiffness and composition collectively regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. L. et al. The endothelial basement membrane acts as a checkpoint for entry of pathogenic T cells into the mind. J. Exp. Med. 217, e20191339 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Du, B. J. et al. Glomerular barrier behaves as an atomically exact bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Baluk, P., Morikawa, S., Haskell, A., Mancuso, M. & McDonald, D. M. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 163, 1801–1815 (2003).

    Article 

    Google Scholar
     

  • Yuan, F. et al. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Most cancers Res. 54, 3352–3356 (1994).

    CAS 

    Google Scholar
     

  • Yokoi, Okay. et al. Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Most cancers Res. 74, 4239–4246 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Miao, L. & Huang, L. Exploring the tumor microenvironment with nanoparticles. Most cancers Deal with. Res. 166, 193–226 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. W., Liu, J., Goh, C. C., Ng, L. G. R. & Liu, B. NIR-II-excited intravital two-photon microscopy distinguishes deep cerebral and tumor vasculatures with an ultrabright NIR-I AIE luminogen. Adv. Mater. 31, 1904447 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Iliff, J. J. et al. A paravascular pathway facilitates CSF move by means of the mind parenchyma and the clearance of interstitial solutes, together with amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article 

    Google Scholar
     

  • Yu, X. et al. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat. Commun. 10, 574 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mikelis, C. M. et al. RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock. Nat. Commun. 6, 6725 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bazzoni, G. & Dejana, E. Endothelial cell-to-cell junctions: molecular group and position in vascular homeostasis. Physiol. Rev. 84, 869–901 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Mak, Okay. M. & Mei, R. Basement membrane kind IV collagen and laminin: an outline of their biology and worth as fibrosis biomarkers of liver illness. Anat. Rec. 300, 1371–1390 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tune, J. et al. Endothelial basement membrane laminin 511 contributes to endothelial junctional tightness and thereby inhibits leukocyte transmigration. Cell Rep. 18, 1256–1269 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chang, J. L. & Chaudhuri, O. Past proteases: basement membrane mechanics and most cancers invasion. J. Cell Biol. 218, 2456–2469 (2019).

    Article 

    Google Scholar
     

  • Rayagiri, S. S. et al. Basal lamina transforming on the skeletal muscle stem cell area of interest mediates stem cell self-renewal. Nat. Commun. 9, 1075 (2018).

    Article 

    Google Scholar
     

  • Liotta, L. A. et al. Metastatic potential correlates with enzymatic degradation of basement-membrane collagen. Nature 284, 67–68 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Reymond, N., d’Agua, B. B. & Ridley, A. J. Crossing the endothelial barrier throughout metastasis. Nat. Rev. Most cancers 13, 858–870 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kelley, L. C., Lohmer, L. L., Hagedorn, E. J. & Sherwood, D. R. Traversing the basement membrane in vivo: a range of methods. J. Cell Biol. 204, 291–302 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zindel, J. et al. Primordial GATA6 macrophages operate as extravascular platelets in sterile harm. Science 371, eabe0595 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. Chemotaxis-driven supply of nano-pathogenoids for full eradication of tumors post-phototherapy. Nat. Commun. 11, 1126 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Visualizing the operate and destiny of neutrophils in sterile harm and restore. Science 358, 111–116 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Harris, T. J. C. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 11, 502–514 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chauhan, V. P. et al. Normalization of tumour blood vessels improves the supply of nanomedicines in a size-dependent method. Nat. Nanotechnol. 7, 383–388 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Orsenigo, F. et al. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat. Commun. 3, 1208 (2012).

    Article 

    Google Scholar
     

  • Wessel, F. et al. Leukocyte extravasation and vascular permeability are every managed in vivo by completely different tyrosine residues of VE-cadherin. Nat. Immunol. 15, 223–230 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Paul, R. et al. Src deficiency or blockade of Src exercise in mice offers cerebral safety following stroke. Nat. Med. 7, 222–227 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Miller, M. A. et al. Radiation remedy primes tumors for nanotherapeutic supply by way of macrophage-mediated vascular bursts. Sci. Transl. Med. 9, eaal0225 (2017).

    Article 

    Google Scholar
     

  • Matsumoto, Y. et al. Vascular bursts improve permeability of tumour blood vessels and enhance nanoparticle supply. Nat. Nanotechnol. 11, 533–538 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Igarashi, Okay. et al. Vascular bursts act as a flexible tumor vessel permeation route for blood-borne particles and cells. Small 17, 2103751 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Naumenko, V. A. et al. Extravasating neutrophils open vascular barrier and enhance liposomes supply to tumors. ACS Nano 13, 12599–12612 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yeh, Y. T. et al. Three-dimensional forces exerted by leukocytes and vascular endothelial cells dynamically facilitate diapedesis. Proc. Natl Acad. Sci. USA 115, 133–138 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pittet, M. J., Garris, C. S., Arlauckas, S. P. & Weissleder, R. Recording the wild lives of immune cells. Sci. Immunol. 3, eaaq0491 (2018).

    Article 

    Google Scholar
     

  • Combes, F., Meyer, E. & Sanders, N. N. Immune cells as tumor drug supply automobiles. J. Management. Launch 327, 70–87 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kurz, A. R. M. et al. MST1-dependent vesicle trafficking regulates neutrophil transmigration by means of the vascular basement membrane. J. Clin. Make investments. 126, 4125–4139 (2016).

    Article 

    Google Scholar
     

  • Sreeramkumar, V. et al. Neutrophils scan for activated platelets to provoke irritation. Science 346, 1234–1238 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Franco, A. T., Corken, A. & Ware, J. Platelets on the interface of thrombosis, irritation, and most cancers. Blood 126, 582–588 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lv, Y. L. et al. Close to-infrared light-triggered platelet arsenal for mixed photothermal–immunotherapy in opposition to most cancers. Sci. Adv. 7, eabd7614 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Miller, M. A., Askevold, B., Yang, Okay. S., Kohler, R. H. & Weissleder, R. Platinum compounds for high-resolution in vivo most cancers imaging. ChemMedChem 9, 1131–1135 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply